Casimirs of the Virasoro algebra

被引:2
作者
Fortin, Jean-Francois [1 ]
Quintavalle, Lorenzo [1 ]
Skiba, Witold [2 ]
机构
[1] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ G1V 0A6, Canada
[2] Yale Univ, Dept Phys, New Haven, CT 06520 USA
基金
加拿大自然科学与工程研究理事会;
关键词
SINGULAR VECTORS; GAUGE SYMMETRIES; FIELD-THEORY; OPERATORS; MODULES;
D O I
10.1016/j.physletb.2024.139080
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explicitly solve a recurrence relation due to Feigin and Fuchs to obtain the Casimirs of the Virasoro algebra in terms of the inverse of the Shapovalov form. Combined with our recent result for the inverse Shapovalov form, this allows us to write the Casimir operators as linear combinations of products of singular vectors.
引用
收藏
页数:6
相关论文
共 27 条
[1]  
Dolan FA, 2012, Arxiv, DOI arXiv:1108.6194
[2]   THE GAUGE-COVARIANT FORMULATION OF INTERACTING STRINGS AND SUPERSTRINGS [J].
AWADA, MA .
PHYSICS LETTERS B, 1986, 172 (01) :32-39
[3]   GAUGE-INVARIANCE OF STRING FIELDS [J].
BANKS, T ;
PESKIN, ME .
NUCLEAR PHYSICS B, 1986, 264 (04) :513-547
[4]   COVARIANT DIFFERENTIAL-EQUATIONS AND SINGULAR VECTORS IN VIRASORO REPRESENTATIONS [J].
BAUER, M ;
DIFRANCESCO, P ;
ITZYKSON, C ;
ZUBER, JB .
NUCLEAR PHYSICS B, 1991, 362 (03) :515-562
[5]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[6]   DEGENERATE CONFORMAL FIELD-THEORIES AND EXPLICIT EXPRESSIONS FOR SOME NULL VECTORS [J].
BENOIT, L ;
SAINTAUBIN, Y .
PHYSICS LETTERS B, 1988, 215 (03) :517-522
[7]   ELIMINATING SPURIOUS STATES FROM DUAL RESONANCE MODEL [J].
BROWER, RC ;
THORN, CB .
NUCLEAR PHYSICS B, 1971, B 31 (01) :163-+
[8]   Gaudin models and multipoint cnformal blocks: general theory [J].
Buric, Ilija ;
Lacroix, Sylvain ;
Mann, Jeremy A. ;
Quintavalle, Lorenzo ;
Schomerus, Volker .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (10)
[9]  
Di Francesco P., 1997, CONFORMAL FIELD THEO, DOI 10.1007/978-1-4612-2256-9
[10]  
Feigin B.L., Representation of Lie groups and related topics, P465