BioModTool: from biomass composition data to structured biomass objective functions for genome-scale metabolic models

被引:0
作者
Thibert, Clemence Dupont [1 ]
Roy, Sylvaine [1 ]
Curien, Gilles [1 ]
Durot, Maxime [2 ]
机构
[1] Univ Grenoble Alpes, Interdisciplinary Res Inst Grenoble, Lab Physiol Cellulaire & Vegetale, F-3800 Grenoble, France
[2] TotalEnergies OneTech, Ctr Rech Solaize, F-69360 Solaize, France
来源
BIOINFORMATICS ADVANCES | 2025年 / 5卷 / 01期
关键词
D O I
10.1093/bioadv/vbaf036
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BioModTool is a Python program allowing easy generation of biomass objective functions for genome-scale metabolic models from user data. BioModTool loads biomass composition data in the form of a structured Excel file completed by the user, normalizes these data into model-compatible units (mmol.gDW-1), and creates a structured biomass objective function to update a metabolic model. Aimed at a wide range of users, BioModTool can be run as a Python module compatible with COBRApy but also comes with an interface allowing its use by non-modelers. By providing an easy definition of new biomass objective functions, BioModTool can accelerate new genome-scale metabolic reconstructions, improve existing ones, and facilitate biomass-specific experimental datasets analyses with genome-scale models. Availability and implementation BioModTool is publicly available on PyPI (https://pypi.org/project/BioModTool/) under a GNU Lesser General Public License (LGPL). Installation instructions and source code are available on GitHub (https://github.com/Total-RD/BioModTool). BioModTool is compatible with Windows, Linux, and MacOS operating systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Systems metabolic engineering: Genome-scale models and beyond
    Blazeck, John
    Alper, Hal
    [J]. BIOTECHNOLOGY JOURNAL, 2010, 5 (07) : 647 - 659
  • [42] MEMOSys: Bioinformatics platform for genome-scale metabolic models
    Pabinger, Stephan
    Rader, Robert
    Agren, Rasmus
    Nielsen, Jens
    Trajanoski, Zlatko
    [J]. BMC SYSTEMS BIOLOGY, 2011, 5
  • [43] Bayesian inference of metabolic kinetics from genome-scale multiomics data
    St John, Peter C.
    Strutz, Jonathan
    Broadbelt, Linda J.
    Tyo, Keith E. J.
    Bomble, Yannick J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (11)
  • [44] Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models
    N. T. Devika
    Karthik Raman
    [J]. Scientific Reports, 9
  • [45] Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models
    Devika, N. T.
    Raman, Karthik
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [46] Microbial carbon use efficiency predicted from genome-scale metabolic models
    Mustafa Saifuddin
    Jennifer M. Bhatnagar
    Daniel Segrè
    Adrien C. Finzi
    [J]. Nature Communications, 10
  • [47] Microbial carbon use efficiency predicted from genome-scale metabolic models
    Saifuddin, Mustafa
    Bhatnagar, Jennifer M.
    Segre, Daniel
    Finzi, Adrien C.
    [J]. NATURE COMMUNICATIONS, 2019, 10
  • [48] Protein constraints in genome-scale metabolic models: Data integration, parameter estimation, and prediction of metabolic phenotypes
    Ferreira, Mauricio Alexander de Moura
    da Silveira, Wendel Batista
    Nikoloski, Zoran
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2024, 121 (03) : 915 - 930
  • [49] Cyanobacterial genome-scale carbon mapping models for genome-scale 13C-metabolic flux elucidation
    Gopalakrishnan, Saratram
    Maranas, Costas
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [50] Advances in genome-scale metabolic models of industrially important fungi
    Han, Yichao
    Rangel, Albert Tafur
    Pomraning, Kyle R.
    Kerkhoven, Eduard J.
    Kim, Joonhoon
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2023, 84