BioModTool: from biomass composition data to structured biomass objective functions for genome-scale metabolic models

被引:0
作者
Thibert, Clemence Dupont [1 ]
Roy, Sylvaine [1 ]
Curien, Gilles [1 ]
Durot, Maxime [2 ]
机构
[1] Univ Grenoble Alpes, Interdisciplinary Res Inst Grenoble, Lab Physiol Cellulaire & Vegetale, F-3800 Grenoble, France
[2] TotalEnergies OneTech, Ctr Rech Solaize, F-69360 Solaize, France
来源
BIOINFORMATICS ADVANCES | 2025年 / 5卷 / 01期
关键词
D O I
10.1093/bioadv/vbaf036
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BioModTool is a Python program allowing easy generation of biomass objective functions for genome-scale metabolic models from user data. BioModTool loads biomass composition data in the form of a structured Excel file completed by the user, normalizes these data into model-compatible units (mmol.gDW-1), and creates a structured biomass objective function to update a metabolic model. Aimed at a wide range of users, BioModTool can be run as a Python module compatible with COBRApy but also comes with an interface allowing its use by non-modelers. By providing an easy definition of new biomass objective functions, BioModTool can accelerate new genome-scale metabolic reconstructions, improve existing ones, and facilitate biomass-specific experimental datasets analyses with genome-scale models. Availability and implementation BioModTool is publicly available on PyPI (https://pypi.org/project/BioModTool/) under a GNU Lesser General Public License (LGPL). Installation instructions and source code are available on GitHub (https://github.com/Total-RD/BioModTool). BioModTool is compatible with Windows, Linux, and MacOS operating systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] GEMtractor: extracting views into genome-scale metabolic models
    Scharm, Martin
    Wolkenhauer, Olaf
    Jalili, Mahdi
    Salehzadeh-Yazdi, Ali
    BIOINFORMATICS, 2020, 36 (10) : 3281 - 3282
  • [32] A nutrition algorithm to optimize feed and medium composition using genome-scale metabolic models
    Weston, Bronson R.
    Thiele, Ines
    METABOLIC ENGINEERING, 2023, 76 : 167 - 178
  • [33] Flux balance analysis of genome-scale metabolic model of rice (Oryza sativa): Aiming to increase biomass
    Shaw, Rahul
    Kundu, Sudip
    JOURNAL OF BIOSCIENCES, 2015, 40 (04) : 819 - 828
  • [34] Current status and applications of genome-scale metabolic models
    Changdai Gu
    Gi Bae Kim
    Won Jun Kim
    Hyun Uk Kim
    Sang Yup Lee
    Genome Biology, 20
  • [35] Current status and applications of genome-scale metabolic models
    Gu, Changdai
    Kim, Gi Bae
    Kim, Won Jun
    Kim, Hyun Uk
    Lee, Sang Yup
    GENOME BIOLOGY, 2019, 20 (1)
  • [36] Use of genome-scale microbial models for metabolic engineering
    Patil, KR
    Åkesson, M
    Nielsen, J
    CURRENT OPINION IN BIOTECHNOLOGY, 2004, 15 (01) : 64 - 69
  • [37] Network reduction methods for genome-scale metabolic models
    Singh, Dipali
    Lercher, Martin J.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2020, 77 (03) : 481 - 488
  • [38] Network reduction methods for genome-scale metabolic models
    Dipali Singh
    Martin J. Lercher
    Cellular and Molecular Life Sciences, 2020, 77 : 481 - 488
  • [39] A PRACTICAL GUIDE TO GENOME-SCALE METABOLIC MODELS AND THEIR ANALYSIS
    Santos, Filipe
    Boele, Joost
    Teusink, Bas
    METHODS IN ENZYMOLOGY, VOL 500: METHODS IN SYSTEMS BIOLOGY, 2011, 500 : 509 - 532
  • [40] Inspecting the Solution Space of Genome-Scale Metabolic Models
    Loghmani, Seyed Babak
    Veith, Nadine
    Sahle, Sven
    Bergmann, Frank T.
    Olivier, Brett G.
    Kummer, Ursula
    METABOLITES, 2022, 12 (01)