Monolithically Integrated Quantum Dots in a 22-nm Fully Depleted Silicon-on-Insulator Process Operating at 3 K

被引:1
作者
Bashir, Imran [1 ]
Sokolov, Andrii [2 ]
Wu, Xutong [2 ]
Giounanlis, Panagiotis [2 ]
Petropoulos, Nikolaos [2 ,3 ]
Leipold, Dirk [1 ]
Asker, Mike [1 ]
Esmailiyan, Ali [2 ]
Andrade-Miceli, Dennis [3 ]
Haenlein, Hans-Christoph [1 ]
Mcgeough, Conor [3 ]
Staszewski, Robert Bogdan [2 ,3 ]
Blokhina, Elena [2 ,3 ]
机构
[1] Equal1 Labs, San Carlos, CA USA
[2] Nexus UCD, Equal1 Labs, Dublin, Ireland
[3] Univ Coll Dublin, Sch Elect & Elect Engn, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
cryogenic electronics; fully depleted silicon-on-insulator; quantum dots; single electron detectors; QUBITS; CHIP;
D O I
10.1002/cta.4350
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum computers comprising large-scale arrays of qubits will enable complex algorithms to be executed to provide a quantum advantage for practical applications. A prerequisite for this milestone is a power-efficient qubit control and detection system operating at cryogenic temperatures. Implementing such systems in complementary metal-oxide-semiconductor (CMOS) technology offers clear advantages in terms of scalability. Here, we present a fully integrated quantum dot array in which silicon quantum wells are co-located with control and detection circuitry on the same die in a commercial 22-nm fully depleted silicon-on-insulator (FDSOI) process. Our system comprises a two-dimensional quantum dot array, integrated with 8 detectors and 32 injectors, operating at 3 K inside a cryo-cooler. The power consumption of the control and detection circuitry is 2.5 mW per qubit without body biasing. The design utilizes 0.8-V nominal Vt$$ {V}_t $$ devices. The setup allows us to verify discrete charge injection control and detection at the quantum dot array and demonstrate the feasibility of this architecture for scaling up the existing quantum core to hundreds and thousands of physical qubits.
引用
收藏
页码:3902 / 3911
页数:10
相关论文
共 34 条
[1]   Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K [J].
Bardin, Joseph C. ;
Jeffrey, Evan ;
Lucero, Erik ;
Huang, Trent ;
Das, Sayan ;
Sank, Daniel Thomas ;
Naaman, Ofer ;
Megrant, Anthony Edward ;
Barends, Rami ;
White, Ted ;
Giustina, Marissa ;
Satzinger, Kevin J. ;
Arya, Kunal ;
Roushan, Pedram ;
Chiaro, Benjamin ;
Kelly, Julian ;
Chen, Zijun ;
Burkett, Brian ;
Chen, Yu ;
Dunsworth, Andrew ;
Fowler, Austin ;
Foxen, Brooks ;
Gidney, Craig ;
Graff, Rob ;
Klimov, Paul ;
Mutus, Josh ;
McEwen, Matthew J. ;
Neeley, Matthew ;
Neill, Charles J. ;
Quintana, Chris ;
Vainsencher, Amit ;
Neven, Hartmut ;
Martinis, John .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (11) :3043-3060
[2]  
BASHELEISHVILI I, 2019, P 33 INT C INF TECHN, P1
[3]   Bias Generation and Calibration of CMOS Charge Qubits at 3.5 Kelvin in 22-nm FDSOI [J].
Bashir, Imran ;
Leipold, Dirk ;
Asker, Mike ;
Esmailiyan, Ali ;
Blokhina, Elena ;
Redmond, David ;
Giounanlis, Panagiotis ;
Andrade-Miceli, Dennis ;
Staszewski, Bogdan .
ESSCIRC 2021 - IEEE 47TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2021, :47-50
[4]  
Bashir I, 2020, IEEE RAD FREQ INTEGR, P215, DOI 10.1109/RFIC49505.2020.9218321
[5]   A Single-Electron Injection Device for CMOS Charge Qubits Implemented in 22-nm FD-SOI [J].
Bashir, Imran ;
Blokhina, Elena ;
Esmailiyan, Ali ;
Leipold, Dirk ;
Asker, Mike ;
Koskin, Eugene ;
Giounanlis, Panagiotis ;
Wang, Hongying ;
Andrade-Miceli, Dennis ;
Sokolov, Andrii ;
Koziol, Anna ;
Siriburanon, Teerachot ;
Staszewski, R. Bogdan .
IEEE SOLID-STATE CIRCUITS LETTERS, 2020, 3 :206-209
[6]   A Mixed-Signal Control Core for a Fully Integrated Semiconductor Quantum Computer System-on-Chip [J].
Bashir, Imran ;
Asker, Mike ;
Cetintepe, Cagri ;
Leipold, Dirk ;
Esmailiyan, Ali ;
Wang, Hongying ;
Siriburanon, Teerachot ;
Giounanlis, Panagiotis ;
Blokhina, Elena ;
Pomorski, Krzysztof ;
Staszewski, Bogdan .
IEEE 45TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2019), 2019, :125-+
[7]   CMOS Position-Based Charge Qubits: Theoretical Analysis of Control and Entanglement [J].
Blokhina, Elena ;
Giounanlis, Panagiotis ;
Mitchell, Andrew ;
Leipold, Dirk R. ;
Staszewski, Robert Bogdan .
IEEE ACCESS, 2020, 8 :4182-4197
[8]   Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs [J].
Bonen, S. ;
Alakusu, U. ;
Duan, Y. ;
Gong, M. J. ;
Dadash, M. S. ;
Lucci, L. ;
Daughton, D. R. ;
Adam, G. C. ;
Iordanescu, S. ;
Pasteanu, M. ;
Giangu, I. ;
Jia, H. ;
Gutierrez, L. E. ;
Chen, W. T. ;
Messaoudi, N. ;
Harame, D. ;
Mueller, A. ;
Mansour, R. R. ;
Asbeck, P. ;
Voinigescu, S. P. .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (01) :127-130
[9]   A hole spin qubit in a fin field-effect transistor above 4 kelvin [J].
Camenzind, Leon C. ;
Geyer, Simon ;
Fuhrer, Andreas ;
Warburton, Richard J. ;
Zumbuehl, Dominik M. ;
Kuhlmann, Andreas, V .
NATURE ELECTRONICS, 2022, 5 (03) :178-183
[10]  
Carter R, 2016, INT EL DEVICES MEET