Monolithically Integrated Quantum Dots in a 22-nm Fully Depleted Silicon-on-Insulator Process Operating at 3 K

被引:0
作者
Bashir, Imran [1 ]
Sokolov, Andrii [2 ]
Wu, Xutong [2 ]
Giounanlis, Panagiotis [2 ]
Petropoulos, Nikolaos [2 ,3 ]
Leipold, Dirk [1 ]
Asker, Mike [1 ]
Esmailiyan, Ali [2 ]
Andrade-Miceli, Dennis [3 ]
Haenlein, Hans-Christoph [1 ]
Mcgeough, Conor [3 ]
Staszewski, Robert Bogdan [2 ,3 ]
Blokhina, Elena [2 ,3 ]
机构
[1] Equal1 Labs, San Carlos, CA USA
[2] Nexus UCD, Equal1 Labs, Dublin, Ireland
[3] Univ Coll Dublin, Sch Elect & Elect Engn, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
cryogenic electronics; fully depleted silicon-on-insulator; quantum dots; single electron detectors; QUBITS; CHIP;
D O I
10.1002/cta.4350
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum computers comprising large-scale arrays of qubits will enable complex algorithms to be executed to provide a quantum advantage for practical applications. A prerequisite for this milestone is a power-efficient qubit control and detection system operating at cryogenic temperatures. Implementing such systems in complementary metal-oxide-semiconductor (CMOS) technology offers clear advantages in terms of scalability. Here, we present a fully integrated quantum dot array in which silicon quantum wells are co-located with control and detection circuitry on the same die in a commercial 22-nm fully depleted silicon-on-insulator (FDSOI) process. Our system comprises a two-dimensional quantum dot array, integrated with 8 detectors and 32 injectors, operating at 3 K inside a cryo-cooler. The power consumption of the control and detection circuitry is 2.5 mW per qubit without body biasing. The design utilizes 0.8-V nominal Vt$$ {V}_t $$ devices. The setup allows us to verify discrete charge injection control and detection at the quantum dot array and demonstrate the feasibility of this architecture for scaling up the existing quantum core to hundreds and thousands of physical qubits.
引用
收藏
页数:10
相关论文
共 34 条
  • [1] Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K
    Bardin, Joseph C.
    Jeffrey, Evan
    Lucero, Erik
    Huang, Trent
    Das, Sayan
    Sank, Daniel Thomas
    Naaman, Ofer
    Megrant, Anthony Edward
    Barends, Rami
    White, Ted
    Giustina, Marissa
    Satzinger, Kevin J.
    Arya, Kunal
    Roushan, Pedram
    Chiaro, Benjamin
    Kelly, Julian
    Chen, Zijun
    Burkett, Brian
    Chen, Yu
    Dunsworth, Andrew
    Fowler, Austin
    Foxen, Brooks
    Gidney, Craig
    Graff, Rob
    Klimov, Paul
    Mutus, Josh
    McEwen, Matthew J.
    Neeley, Matthew
    Neill, Charles J.
    Quintana, Chris
    Vainsencher, Amit
    Neven, Hartmut
    Martinis, John
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (11) : 3043 - 3060
  • [2] Bashir I., 2019, P IEEE EUR SOL CIRC, P1
  • [3] Bias Generation and Calibration of CMOS Charge Qubits at 3.5 Kelvin in 22-nm FDSOI
    Bashir, Imran
    Leipold, Dirk
    Asker, Mike
    Esmailiyan, Ali
    Blokhina, Elena
    Redmond, David
    Giounanlis, Panagiotis
    Andrade-Miceli, Dennis
    Staszewski, Bogdan
    [J]. ESSCIRC 2021 - IEEE 47TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2021, : 47 - 50
  • [4] Bashir I, 2020, IEEE RAD FREQ INTEGR, P215, DOI 10.1109/RFIC49505.2020.9218321
  • [5] A Single-Electron Injection Device for CMOS Charge Qubits Implemented in 22-nm FD-SOI
    Bashir, Imran
    Blokhina, Elena
    Esmailiyan, Ali
    Leipold, Dirk
    Asker, Mike
    Koskin, Eugene
    Giounanlis, Panagiotis
    Wang, Hongying
    Andrade-Miceli, Dennis
    Sokolov, Andrii
    Koziol, Anna
    Siriburanon, Teerachot
    Staszewski, R. Bogdan
    [J]. IEEE SOLID-STATE CIRCUITS LETTERS, 2020, 3 : 206 - 209
  • [6] A Verilog-A Model of the Shuttle of an Electron in a Two Quantum-Dot System
    Bashir, Imran
    Giounanlis, Panagiotis
    Blokhina, Elena
    Leipold, Drik
    Pomorski, Krzysztof
    Staszewski, Robert Bogdan
    [J]. 2019 17TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2019,
  • [7] CMOS Position-Based Charge Qubits: Theoretical Analysis of Control and Entanglement
    Blokhina, Elena
    Giounanlis, Panagiotis
    Mitchell, Andrew
    Leipold, Dirk R.
    Staszewski, Robert Bogdan
    [J]. IEEE ACCESS, 2020, 8 : 4182 - 4197
  • [8] Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs
    Bonen, S.
    Alakusu, U.
    Duan, Y.
    Gong, M. J.
    Dadash, M. S.
    Lucci, L.
    Daughton, D. R.
    Adam, G. C.
    Iordanescu, S.
    Pasteanu, M.
    Giangu, I.
    Jia, H.
    Gutierrez, L. E.
    Chen, W. T.
    Messaoudi, N.
    Harame, D.
    Mueller, A.
    Mansour, R. R.
    Asbeck, P.
    Voinigescu, S. P.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2019, 40 (01) : 127 - 130
  • [9] A hole spin qubit in a fin field-effect transistor above 4 kelvin
    Camenzind, Leon C.
    Geyer, Simon
    Fuhrer, Andreas
    Warburton, Richard J.
    Zumbuehl, Dominik M.
    Kuhlmann, Andreas, V
    [J]. NATURE ELECTRONICS, 2022, 5 (03) : 178 - 183
  • [10] Carter R, 2016, INT EL DEVICES MEET