Optimizing the impact toughness of PLA materials using machine learning algorithms

被引:0
|
作者
Chen, Yizhuo [1 ,2 ]
Zou, Wei [3 ]
Wang, Guanghong [3 ]
Zhang, Chongtian [4 ]
Zhang, Chenglong [4 ]
机构
[1] Jiangsu Normal Univ, JSNU SPBPU Inst Engn, Russian Inst, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
[2] Jiangsu Normal Univ, Sino Russian Inst, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
[3] Jiangsu Normal Univ, Sch Mechatron Engn, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
[4] Harbin Inst Technol Weihai, Dept Mech Engn, Weihai 264209, Peoples R China
来源
关键词
FDM; Polylactic acid (PLA); Impact toughness; Tree algorithms; 3D printing parameters; Prediction; PARAMETERS OPTIMIZATION; DEPOSITION;
D O I
10.1016/j.mtcomm.2025.111881
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the influence of various printing parameters on the impact toughness of PLA products, utilizing small sample data and machine learning algorithms to expedite the identification of optimal toughness. We propose a 3D printing tree algorithm model that focuses on the temporal distribution of impact toughness. The relationships between printing parameters and impact toughness are explored and predicted using three algorithms: Random Forest(RF),Light Gradient Boosting Machine(LightGBM) and Adaptive Boosting(AdaBoost). Experimental results indicate that the LightGBM algorithm yields the highest predictive accuracy, with the optimal parameter combination being a layer height of 0.3 mm, an infill density of 100 %, a printing speed of 60 mm/s, and a nozzle temperature of 200-210 degrees C.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Optimizing Renewable Energy Integration Using IoT and Machine Learning Algorithms
    Mamyrbayev, O.
    Akhmediyarova, A.
    Oralbekova, D.
    Alimkulova, J.
    Alibiyeva, Z.
    INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING AND MANAGEMENT, 2025, 16 (01): : 101 - 112
  • [2] Head Impact Detection Using Machine Learning Algorithms
    Al Bataineh, Mohammad
    Abu Abdoun, Dana I.
    Alnuaimi, Huda
    Al-Qudah, Zouhair
    Albataineh, Zaid
    Al Ahmad, Mahmoud
    IEEE ACCESS, 2024, 12 : 4938 - 4947
  • [3] A Novel Approach for Optimizing Building Energy Models Using Machine Learning Algorithms
    Kubwimana, Benjamin
    Najafi, Hamidreza
    ENERGIES, 2023, 16 (03)
  • [4] The Camouflage Machine: Optimizing protective coloration using deep learning with genetic algorithms
    Fennell, John G.
    Talas, Laszlo
    Baddeley, Roland J.
    Cuthill, Innes C.
    Scott-Samuel, Nicholas E.
    EVOLUTION, 2021, 75 (03) : 614 - 624
  • [5] An Empirical Bayes Approach to Optimizing Machine Learning Algorithms
    McInerney, James
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [6] Prediction of wear of dental composite materials using machine learning algorithms
    Suryawanshi, Abhijeet
    Behera, Niranjana
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024, 27 (03) : 400 - 410
  • [7] The Impact of Interposable Algorithms on Machine Learning
    Ma Jinzhu
    Liang Wei
    Li Junjie
    CONTEMPORARY INNOVATION AND DEVELOPMENT IN MANAGEMENT SCIENCE, 2012, : 652 - 656
  • [8] Optimizing flexural strength of fused deposition modelling using supervised machine learning algorithms
    Jatti V.S.
    Jatti A.V.
    Mishra A.
    Dhabale R.D.
    Sefene E.M.
    International Journal of Information Technology, 2023, 15 (5) : 2759 - 2766
  • [9] Modeling and optimizing a vendor managed replenishment system using machine learning and genetic algorithms
    Chi, Hoi-Ming
    Ersoy, Okan K.
    Moskowitz, Herbert
    Ward, Jim
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 180 (01) : 174 - 193
  • [10] Estimating the effective fracture toughness of a variety of materials using several machine learning models
    Mahmoodzadeh, Arsalan
    Fakhri, Danial
    Mohammed, Adil Hussein
    Mohammed, Amin Salih
    Ibrahim, Hawkar Hashim
    Rashidi, Shima
    ENGINEERING FRACTURE MECHANICS, 2023, 286