Imeglimin Halts Liver Damage by Improving Mitochondrial Dysfunction in a Nondiabetic Male Mouse Model of Metabolic Dysfunction-Associated Steatohepatitis

被引:1
作者
Kaji, Kosuke [1 ]
Takeda, Soichi [1 ]
Iwai, Satoshi [1 ]
Nishimura, Norihisa [1 ]
Sato, Shinya [1 ]
Namisaki, Tadashi [1 ]
Akahane, Takemi [1 ]
Yoshiji, Hitoshi [1 ]
机构
[1] Nara Med Univ, Dept Gastroenterol, 840 Shijo Cho, Kashihara, Nara 6348521, Japan
关键词
imeglimin; hepatocyte; metabolic dysfunction-associated steatohepatitis; fatty acid oxidation; reactive oxygen species; mitochondrial biogenesis; PROTEIN-KINASE SUPPRESSES; INSULIN-SECRETION; HIGH-FAT; DISEASE; LIPOTOXICITY; ARCHITECTURE; EXPRESSION; NASH;
D O I
10.3390/antiox13111415
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Imeglimin promotes glucose-stimulated insulin secretion in the pancreas in a glucose-dependent manner and inhibits gluconeogenesis in the liver. Meanwhile, imeglimin can improve mitochondrial function in hepatocytes. We used a nondiabetic metabolic dysfunction-associated steatohepatitis (MASH) model to examine the effects of imeglimin on MASH independent of its glucose-lowering action. Mice fed a choline-deficient high-fat diet (CDA-HFD) were orally administered imeglimin (100 and 200 mg/kg twice daily), and MASH pathophysiology was evaluated after 8 weeks. Moreover, an in vitro study investigated the effects of imeglimin on palmitic acid (PA)-stimulated lipid accumulation, apoptosis, and mitochondrial dysfunction in human hepatocytes. CDA-HFD-fed mice showed hepatic steatosis, inflammation, and fibrosis without hyperglycemia. Imeglimin reduced hepatic steatosis in response to increased expression of beta-oxidation-related markers. Imeglimin reduced reactive oxygen species accumulation and increased mitochondrial biogenesis in CDA-HFD-fed mice. Consequently, imeglimin suppressed hepatocyte apoptosis and decreased macrophage infiltration with reduced proinflammatory cytokine expression, suppressing hepatic fibrosis development. PA-stimulated hepatocytes induced lipogenesis, inflammatory cytokine production, and apoptosis, which were significantly suppressed by imeglimin. In mitochondrial function, imeglimin improved PA-stimulated decrease in mitochondrial membrane potential, mitochondrial complexes activity, oxygen consumption rate, and mitochondrial biogenesis marker expression. In conclusion, imeglimin could contribute to prevention of MASH progression through suppressing de novo lipogenesis and enhancing fatty acid oxidation.
引用
收藏
页数:19
相关论文
共 50 条
[11]   Mechanisms of NAFLD development and therapeutic strategies [J].
Friedman, Scott L. ;
Neuschwander-Tetri, Brent A. ;
Rinella, Mary ;
Sanyal, Arun J. .
NATURE MEDICINE, 2018, 24 (07) :908-922
[12]   Mitochondrial alterations in fatty liver diseases [J].
Fromenty, Bernard ;
Roden, Michael .
JOURNAL OF HEPATOLOGY, 2023, 78 (02) :415-429
[13]   Mitochondrial DNA from hepatocytes induces upregulation of interleukin-33 expression of macrophages in nonalcoholic steatohepatitis [J].
Gao, Yinjie ;
Wang, Yijin ;
Liu, Hongling ;
Liu, Zhenwen ;
Zhao, Jingmin .
DIGESTIVE AND LIVER DISEASE, 2020, 52 (06) :637-643
[14]   Reproductive Endocrinology of Nonalcoholic Fatty Liver Disease [J].
Grossmann, Mathis ;
Wierman, Margaret E. ;
Angus, Peter ;
Handelsman, David J. .
ENDOCRINE REVIEWS, 2019, 40 (02) :417-446
[15]   Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD [J].
Hagstrom, Hannes ;
Nasr, Patrik ;
Ekstedt, Mattias ;
Hammar, Ulf ;
Stal, Per ;
Hultcrantz, Rolf ;
Kechagias, Stergios .
JOURNAL OF HEPATOLOGY, 2017, 67 (06) :1265-1273
[16]   A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis [J].
Harrison, Stephen A. ;
Bedossa, Pierre ;
Guy, Cynthia D. ;
Schattenberg, Joern M. ;
Loomba, Rohit ;
Taub, Rebecca ;
Labriola, Dominic ;
Moussa, Sam E. ;
Neff, Guy W. ;
Rinella, Mary E. ;
Anstee, Quentin M. ;
Abdelmalek, Manal F. ;
Younossi, Zobair ;
Baum, Seth J. ;
Francque, Sven ;
Charlton, Michael R. ;
Newsome, Philip N. ;
Lanthier, Nicolas ;
Schiefke, Ingolf ;
Mangia, Alessandra ;
Pericas, Juan M. ;
Patil, Rashmee ;
Sanyal, Arun J. ;
Noureddin, Mazen ;
Bansal, Meena B. ;
Alkhouri, Naim ;
Castera, Laurent ;
Rudraraju, Madhavi ;
Ratziu, Vlad .
NEW ENGLAND JOURNAL OF MEDICINE, 2024, 390 (06) :497-509
[17]   Asperuloside activates hepatic NRF2 signaling to stimulate mitochondrial metabolism and restore lipid homeostasis in high fat diet-induced MAFLD [J].
He, Chufeng ;
Zhang, Qile ;
Zhu, Ruiwen ;
Tse, Gary ;
Wong, Wing Tak .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 983
[18]   Effects of imeglimin on mitochondrial function, AMPK activity, and gene expression in hepatocytes [J].
Hozumi, Kaori ;
Sugawara, Kenji ;
Ishihara, Takaya ;
Ishihara, Naotada ;
Ogawa, Wataru .
SCIENTIFIC REPORTS, 2023, 13 (01)
[19]   Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention [J].
Huang, Daniel Q. ;
El-Serag, Hashem B. ;
Loomba, Rohit .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2021, 18 (04) :223-238
[20]   Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis [J].
Hughey, Curtis C. ;
Puchalska, Patrycja ;
Crawford, Peter A. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2022, 1867 (11)