FLEURS-R: A Restored Multilingual Speech Corpus for Generation Tasks

被引:0
作者
Mal, Mm [1 ]
Koizumi, Yuma [2 ]
Karita, Shigeki [2 ]
Zen, Heiga [2 ]
Riesa, Jason [1 ]
Ishikawa, Haruko [2 ]
Bacchiani, Michiel [2 ]
机构
[1] Google DeepMind, Mountain View, CA 94043 USA
[2] Google DeepMind, Tokyo, Japan
来源
INTERSPEECH 2024 | 2024年
关键词
Multilingual speech corpus; speech generative models; speech restoration; text-to-speech;
D O I
10.21437/Interspeech.2024-1356
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces FLEURS-R, a speech restoration applied version of the Few-shot Learning Evaluation ofUniversal Representations of Speech (FLEURS) corpus. FLEURS-R maintains an N-way parallel speech corpus in 102 languages as FLEURS, with improved audio quality and fidelity by applying the speech restoration model Miipher. The aim of FLEURS-R is to advance speech technology in more languages and catalyze research including text-to-speech (TTS) and other speech generation tasks in low-resource languages. Comprehensive evaluations with the restored speech and TTS baseline models trained from the new corpus showthat the newcorpus obtained significantly improved speech quality while maintaining the semantic contents of the speech. The corpus is publicly released via Hugging Face(1).
引用
收藏
页码:1835 / 1839
页数:5
相关论文
共 30 条
[1]  
[Anonymous], Attribution-No Derivs-NonCommercial
[2]  
Borsos Z., 2023, IEEE/ACM Trans. ASLP
[3]  
Casanova E., 2022, PROC ICM, P2720
[4]  
Chen Nanxin, 2021, PROC INT C LEARN REP
[5]  
Chen Z., 2023, P SLT, P6875
[6]  
Chung Y. -A., 2021, 2021 IEEE AUT
[7]  
Conneau A., 2023, P SLT
[8]  
Defossez A., 2022, Trans. MLR
[9]   Conformer: Convolution-augmented Transformer for Speech Recognition [J].
Gulati, Anmol ;
Qin, James ;
Chiu, Chung-Cheng ;
Parmar, Niki ;
Zhang, Yu ;
Yu, Jiahui ;
Han, Wei ;
Wang, Shibo ;
Zhang, Zhengdong ;
Wu, Yonghui ;
Pang, Ruoming .
INTERSPEECH 2020, 2020, :5036-5040
[10]  
Guo Z., 2023, P ICASSP, P1