Single Deterministic Neural Network with Hierarchical Gaussian Mixture Model for Uncertainty Quantification

被引:0
作者
Ji, Chunlin [1 ]
Gong, Dingwei [1 ]
机构
[1] Kuang Chi Inst Adv Technol, Shenzhen, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022 | 2022年 / 13534卷
关键词
Uncertainty quantification; Deterministic deep neural network; Hierarchical Gaussian mixture model; CLASSIFICATION;
D O I
10.1007/978-3-031-18907-4_61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method to train a deterministic deep network for uncertainty quantification (UQ) with a single forward pass. Traditional Monte Carlo or ensemble based UQ methods largely leverage the variation of neural network weights to introduce uncertainty. We propose a hierarchical Gaussian mixture model (GMM) based nonlinear classifier to shape the extracted feature more flexibly and express the uncertainty by the entropy of the predicted posterior distribution. We perform large-scale training with this hierarchical GMM based loss function and introduce a natural gradient descent algorithm to update the parameters of the hierarchical GMM. With a single deterministic neural network, our uncertainty quantification approach performs well when training and testing on large datasets. We show competitive performance scores on several benchmark datasets and the out-of-distribution detection task on notable challenging dataset pairs such as CIFAR-10 vs. STL10/SVHN, and CIFAR100 vs. STL10/SVHN.
引用
收藏
页码:788 / 813
页数:26
相关论文
共 75 条
[1]  
Allen KR, 2019, PR MACH LEARN RES, V97
[2]  
Alvarez-Melis D., 2017, EMNLP
[3]  
Amari S, 1997, ADV NEUR IN, V9, P127
[4]  
Amari S., 1985, Differential-Geometrical Methods in Statistics, DOI DOI 10.1007/978-1-4612-5056-2
[5]  
Amersfoort J. V., 2020, ICML, P9690
[6]  
Banerjee A, 2005, J MACH LEARN RES, V6, P1345
[7]  
Beecks C, 2011, IEEE I CONF COMP VIS, P1754, DOI 10.1109/ICCV.2011.6126440
[8]   Towards Open Set Deep Networks [J].
Bendale, Abhijit ;
Boult, Terrance E. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1563-1572
[9]   Variational Inference for Dirichlet Process Mixtures [J].
Blei, David M. ;
Jordan, Michael I. .
BAYESIAN ANALYSIS, 2006, 1 (01) :121-143
[10]  
Blundell C, 2015, Arxiv, DOI [arXiv:1505.05424, DOI 10.48550/ARXIV.1505.05424]