Nucleobase discrimination based on terahertz spectroscopy using multi-scale convolutional neural network with convolutional block attention module and long short-term memory

被引:0
作者
Chen, Yusa [1 ,2 ]
Meng, Tianhua [3 ]
Wu, Meizhang [4 ,5 ]
Hu, Wenya [3 ]
Yang, Dingyi [6 ]
Wu, Wengang [1 ,2 ]
机构
[1] Natl Key Lab Adv Micro & Nano Manufacture Technol, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Integrated Circuits, Beijing 100871, Peoples R China
[3] Shanxi Datong Univ, Inst Solid State Phys, Shanxi Prov Key Lab Microstruct Electromagnet Func, Datong 037009, Peoples R China
[4] Beijing Informat Sci & Technol Univ, Sch Instrument Sci & Optoelect Engn, Beijing 100096, Peoples R China
[5] Univ Sci & Technol Beijing, Sch Automat, Beijing 100083, Peoples R China
[6] Shandong Univ, Taishan Coll, Jinan 250000, Shandong, Peoples R China
关键词
Terahertz spectral; Nucleobase discrimination; Multi-scale feature extraction; Convolutional block attention module; Long short-term memory;
D O I
10.1016/j.sna.2025.116434
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we propose an integration of terahertz time-domain spectroscopy (THz-TDS) with a multi-scale convolutional neural network incorporating a convolutional block attention module and long short-term memory (MsCNN-CBAM-LSTM) for accurate nucleobase discrimination. The THz-TDS system captures unique spectral fingerprints of nucleobases, which are inherently complex and difficult to distinguish using conventional methods. The proposed MsCNN-CBAM-LSTM algorithm is specifically designed to process these complex THz spectral data, leveraging multi-scale feature extraction, attention mechanisms, and temporal modeling to achieve superior discrimination accuracy. Experimental results demonstrate that the integration of THz-TDS and MsCNNCBAM-LSTM achieves a remarkable accuracy of 99.17 %, outperforming other state-of-the-art models. This work not only highlights the synergy between advanced spectroscopic techniques and deep learning but also provides a robust framework for biochemical analysis with potential applications in diagnostics and molecular sensing.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Prediction of solar irradiance using convolutional neural network and attention mechanism-based long short-term memory network based on similar day analysis and an attention mechanism
    Hou, Xinxing
    Ju, Chao
    Wang, Bo
    HELIYON, 2023, 9 (11)
  • [12] Pose-based multisource networks using convolutional neural network and long short-term memory for action recognition
    Hu, Fangqiang
    Wu, Qianyu
    Zhang, Sai
    Zhu, Aichun
    Wang, Zixuan
    Bao, Yaping
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (04)
  • [13] Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
    Xiong, Shanwei
    Zhou, Li
    Dai, Yiyang
    Ji, Xu
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 56 : 1 - 14
  • [14] Predicted consumer buying behavior in neural marketing based on convolutional neural network and short-term long-term memory
    Hojjat Azadravesh
    Reza Sheibani
    Yahya Forghani
    Multimedia Tools and Applications, 2025, 84 (16) : 16835 - 16851
  • [15] Real-Time Short-Term Voltage Stability Assessment Using Combined Temporal Convolutional Neural Network and Long Short-Term Memory Neural Network
    Adhikari, Ananta
    Naetiladdanon, Sumate
    Sangswang, Anawach
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [16] Classification of Power Quality Disturbances Using Convolutional Network and Long Short-Term Memory Network
    Rodrigues Junior, Wilson Leal
    Silva Borges, Fabbio Anderson
    Lira Rabelo, Ricardo de A.
    Alves de Lima, Bruno Vicente
    Almeida de Alencar, Jose Eduardo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [17] Coupled convolutional neural network with long short-term memory network for predicting lake water temperature
    Yang, Huajian
    Chen, Chuqiang
    Xue, Xinhua
    JOURNAL OF HYDROLOGY, 2025, 655
  • [18] Sentiment analysis of tweets using a unified convolutional neural network-long short-term memory network model
    Umer, Muhammad
    Ashraf, Imran
    Mehmood, Arif
    Kumari, Saru
    Ullah, Saleem
    Sang Choi, Gyu
    COMPUTATIONAL INTELLIGENCE, 2021, 37 (01) : 409 - 434
  • [19] Short-term wind power prediction based on convolutional long-short-term memory neural networks
    Li R.
    Ma T.
    Zhang X.
    Hui X.
    Liu Y.
    Yin X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (06): : 304 - 311
  • [20] Improving Mandarin Tone Recognition using Convolutional Bidirectional Long Short-Term Memory with Attention
    Yang, Longfei
    Xie, Yanlu
    Zhang, Jinsong
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 352 - 356