Efficient Hardware Acceleration of Spiking Neural Networks using FPGA: Towards Real-Time Edge Neuromorphic Computing

被引:0
作者
El Maachi, Soukaina [1 ]
Chehri, Abdellah [2 ]
Saadane, Rachid [1 ]
机构
[1] Hassania Sch Publ Works EHTP, Intelligent Syst & Sensor Networks SIRC, Casablanca, Morocco
[2] Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON, Canada
来源
2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING | 2024年
关键词
Spiking Neural Networks; Edge Computing; FPGA; Artificial Intelligence; Memory Optimization;
D O I
10.1109/VTC2024-SPRING62846.2024.10683049
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper examines the critical function of Field-Programmable Gate Arrays (FPGAs) in speeding Spiking Neural Networks (SNNs) for real-time edge neuromorphic computing. Our work systematically evaluates the integration of FPGA technology for the optimization and speeding of SNN models. The analysis covers the power efficiency, low latency processing, and parallelism that are intrinsic benefits of FPGAs, emphasizing their relevance for edge computing applications. We discuss the smooth transfer of trained SNN models to FPGA platforms. Using an extensive analysis of state-of-the-art architectures, we demonstrate the efficiency benefits of using FPGA to accelerate SNNs. We derive more insights into the real-world applications of this FPGA-SNN integration in various fields. The analysis supports advances in edge computing and neuromorphic processing paradigms by adding to the collective knowledge of how FPGA enhances the real-time processing capabilities of Spiking Neural Networks.
引用
收藏
页数:5
相关论文
共 40 条
[1]  
[Anonymous], FPGAs: Fundamentals, Advanced Features, and Applications in Industrial Electronics, V1st, DOI [10.1201/9781315162133, DOI 10.1201/9781315162133]
[2]  
Bade S. L., 1994, Proceedings IEEE Workshop on FPGAs for Custom Computing Machines (Cat. No.94TH0611-4), P189, DOI 10.1109/FPGA.1994.315612
[3]  
Boroumand A, 2021, Arxiv, DOI arXiv:2103.00768
[4]   FPGA Architecture: Principles and Progression [J].
Boutros, Andrew ;
Betz, Vaughn .
IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2021, 21 (02) :4-29
[5]   Klessydra-T: Designing Vector Coprocessors for Multithreaded Edge-Computing Cores [J].
Cheikh, Abdallah ;
Sordillo, Stefano ;
Mastrandrea, Antonio ;
Menichelli, Francesco ;
Scotti, Giuseppe ;
Olivieri, Mauro .
IEEE MICRO, 2021, 41 (02) :64-71
[6]   Neuromorphic Integrated Sensing and Communications [J].
Chen, Jiechen ;
Skatchkovsky, Nicolas ;
Simeone, Osvaldo .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (03) :476-480
[7]  
Das A, 2018, DES AUT TEST EUROPE, P1217, DOI 10.23919/DATE.2018.8342201
[8]  
Enticknap Nicholas, 1989, VON NEUMANN ARCHITECTURE, P128, DOI [10.1016/B978-1-4831-3553-3.50066-9, DOI 10.1016/B978-1-4831-3553-3.50066-9]
[9]   E3NE: An End-to-End Framework for Accelerating Spiking Neural Networks With Emerging Neural Encoding on FPGAs [J].
Gerlinghoff, Daniel ;
Wang, Zhehui ;
Gu, Xiaozhe ;
Goh, Rick Siow Mong ;
Luo, Tao .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (11) :3207-3219
[10]   SPIKING NEURAL NETWORKS [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojjat .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2009, 19 (04) :295-308