The operational matrices methods for solving the Poisson equation with nonlocal boundary conditions

被引:0
作者
Myasar Obaid Enadi [1 ]
Majeed A. AL-Jawary [1 ]
Mustafa Turkyilmazoglu [2 ]
机构
[1] University of Baghdad,Department of Mathematics, College of Education for Pure Sciences Ibn AL
[2] Hacettepe University,Haitham
[3] China Medical University,Department of Mathematics
关键词
Poisson equation; Orthogonal polynomials; Operational matrices; Nonlocal boundary conditions; 35J05; 41A10; 65M99;
D O I
10.1007/s12190-024-02313-y
中图分类号
学科分类号
摘要
The objective of this paper is to implement some operational matrices methods for solving the two-dimensional Poisson equation with nonlocal boundary conditions using orthogonal polynomials with their operational matrices. Polynomials, namely of the form Standard, Chebyshev, Legendre, Bernoulli, Genocchi and Boubaker are used to find the approximate solution for the problem under Dirichlet and two types of nonlocal boundary conditions. The partial differential equation is converted to a set of linear algebraic equations that can utilize Mathematica®12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Mathematica}}^{\circledR }12$$\end{document} for the linear algebra task. The mean square error Lrms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{rms}$$\end{document} and error norm L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}_{\infty }$$\end{document} are then computed to compare the errors of proposed approaches. A different set of examples is solved to prove the effectiveness and accuracy of the methods. Three examples with classical Dirichlet boundary conditions and two types of nonlocal boundary conditions, namely two-point boundary conditions and integral boundary condition, are treated by the suggested polynomials.
引用
收藏
页码:2385 / 2432
页数:47
相关论文
empty
未找到相关数据