Reaction-diffusion system approximation to degenerate parabolic systems

被引:16
作者
Murakawa, H. [1 ]
机构
[1] Toyama Univ, Grad Sch Sci & Engn Res, Toyama 9308555, Japan
关键词
SPATIAL SEGREGATION LIMIT; CROSS-DIFFUSION; STEFAN PROBLEM;
D O I
10.1088/0951-7715/20/10/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a degenerate parabolic system including Stefan and porous medium type systems is considered. We propose a reaction-diffusion system with a solution that approximates that of a degenerate parabolic system. The reaction-diffusion system includes only a simple reaction and linear diffusion. Resolving semi-linear problems is typically easier than dealing with nonlinear diffusion problems. Therefore, our ideas are expected to reveal new and more effective approaches to the study of nonlinear diffusion problems.
引用
收藏
页码:2319 / 2332
页数:14
相关论文
共 15 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]   Finite element approximation of a nonlinear cross-diffusion population model [J].
Barrett, JW ;
Blowey, JF .
NUMERISCHE MATHEMATIK, 2004, 98 (02) :195-221
[3]  
BERGER AE, 1979, RAIRO-ANAL NUMER-NUM, V13, P297
[4]  
Brezis H., 1973, OPERATEURS MAXIMAUS
[5]   Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions [J].
Crooks, ECM ;
Dancer, EN ;
Hilhorst, D ;
Mimura, M ;
Ninomiya, H .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (04) :645-665
[6]   Spatial segregation limit of a competition-diffusion system [J].
Dancer, EN ;
Hilhorst, D ;
Mimura, M ;
Peletier, LA .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 :97-115
[7]  
GALIANO G, 2001, REV R ACAD CIEN SE A, V95, P181
[8]   A competition-diffusion system approximation to the classical two-phase Stefan problem - To the memory of Professor Masaya Yamaguti [J].
Hilhorst, D ;
Iida, M ;
Mimura, M ;
Ninomiya, H .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2001, 18 (02) :161-180
[9]   Diffusion, cross-diffusion and competitive interaction [J].
Iida, Masato ;
Mimura, Masayasu ;
Ninomiya, Hirokazu .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (04) :617-641
[10]  
Knabner P., 1991, MATHEMATISCHE MODELL