AN AREA BOUND FOR SURFACES IN RIEMANNIAN MANIFOLDS

被引:0
作者
Bangert, Victor [1 ]
Kuwert, Ernst [1 ]
机构
[1] Albert Ludwigs Univ Freiburg, Math Inst, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
关键词
COMPACTNESS THEOREM; IMMERSIONS; EXISTENCE; CURVATURE; SPHERES;
D O I
10.4310/jdg/1736261979
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact Riemannian manifold not containing any totally geodesic surface. Our main result shows that then the area of any complete surface immersed into M is bounded by a multiple of its extrinsic curvature energy, i.e. by a multiple of the integral of the squared norm of its second fundamental form.
引用
收藏
页码:65 / 113
页数:49
相关论文
共 30 条
[1]  
[Anonymous], 1941, Jber. Deutsch. Math. Verein.
[2]  
[Anonymous], 1993, COMMUN ANAL GEOM
[3]   Calibrations and laminations [J].
Bangert, Victor ;
Cui, Xiaojun .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 162 (01) :151-171
[4]   Compactness of immersions with local Lipschitz representation [J].
Breuning, Patrick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (04) :545-572
[5]  
Burago Dmitri, 2001, GRADUATE STUDIES MAT, V33, DOI 10.1090/gsm/033
[6]  
BURAGO YU. D., 1988, Grundlehren der mathematischen Wissenschaften, V285
[7]   ON THE TOTAL CURVATURE OF IMMERSED MANIFOLDS [J].
CHERN, SS ;
LASHOF, RK .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (02) :306-318
[8]   A COMPACTNESS THEOREM FOR SURFACES WITH BOUNDED INTEGRAL CURVATURE [J].
Debin, Clement .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (02) :597-645
[9]  
Federer H., 1969, Die Grundlehren der mathematischen Wissenschaften, V153
[10]  
Fiala F., 1941, COMMENT MATH HELV, V13, P293