Khovanov Algebras for the Periplectic Lie Superalgebras

被引:0
作者
Nehme, Jonas [1 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
关键词
HIGHEST WEIGHT CATEGORIES; DELIGNE CATEGORIES; REPRESENTATIONS; DUALITY;
D O I
10.1093/imrn/rnae230
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The periplectic Lie superalgebra $\mathfrak{p}(n)$ is one of the most mysterious and least understood simple classical Lie superalgebras with reductive even part. We approach the study of its finite dimensional representation theory in terms of Schur-Weyl duality. We provide an idempotent version of its centralizer, that is, the super Brauer algebra. We use this to describe explicitly the endomorphism ring of a projective generator for $\mathfrak{p}(n)$ resembling the Khovanov algebra of [ ]. We also give a diagrammatic description of the translation functors from [ ] in terms of certain bimodules and study their effect on projective, standard, costandard, and irreducible modules. These results will be used to classify irreducible summands in $V<^>{\otimes d}$, compute $\operatorname{Ext}<^>{1}$ between irreducible modules and show that $\mathfrak{p}(n)\operatorname{-mod}$ does not admit a Koszul grading.
引用
收藏
页码:14008 / 14060
页数:53
相关论文
共 26 条
[1]  
Balagovic M, 2019, MATH RES LETT, V26, P643
[2]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[3]   Semi-Infinite Highest Weight Categories [J].
Brundan, Jonathan ;
Stroppel, Catharina .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 293 (1459) :1-152
[4]   Gradings on walled Brauer algebras and Khovanov's arc algebra [J].
Brundan, Jonathan ;
Stroppel, Catharina .
ADVANCES IN MATHEMATICS, 2012, 231 (02) :709-773
[5]  
Brundan J, 2011, MOSC MATH J, V11, P685
[6]   HIGHEST WEIGHT CATEGORIES ARISING FROM KHOVANOV'S DIAGRAM ALGEBRA III: CATEGORY O [J].
Brundan, Jonathan ;
Stroppel, Catharina .
REPRESENTATION THEORY, 2011, 15 :170-243
[7]   Schur-Weyl duality for higher levels [J].
Brundan, Jonathan ;
Kleshchev, Alexander .
SELECTA MATHEMATICA-NEW SERIES, 2008, 14 (01) :1-57
[8]   ELECTRICAL NETWORKS, LAGRANGIAN GRASSMANNIANS, AND SYMPLECTIC GROUPS [J].
Bychkov, B. ;
Gorbounov, V. ;
Kazakov, A. ;
Talalaev, D. .
MOSCOW MATHEMATICAL JOURNAL, 2023, 23 (02) :133-167
[9]   Finite-dimensional representations of periplectic Lie superalgebras [J].
Chen, Chih-Whi .
JOURNAL OF ALGEBRA, 2015, 443 :99-125
[10]   The Periplectic Brauer Algebra III: The Deligne Category [J].
Coulembier, Kevin ;
Ehrig, Michael .
ALGEBRAS AND REPRESENTATION THEORY, 2021, 24 (04) :993-1027