Large-Sample Theory for Inferential Models: A Possibilistic Bernstein-von Mises Theorem

被引:1
|
作者
Martin, Ryan [1 ]
Williams, Jonathan P. [1 ]
机构
[1] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Asymptotics; Bayesian; belief; fiducial; relative likelihood; BELIEF FUNCTIONS; CONFIDENCE;
D O I
10.1007/978-3-031-67977-3_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The inferential model (IM) framework offers alternatives to the familiar probabilistic (e.g., Bayesian and fiducial) uncertainty quantification in statistical inference. Allowing uncertainty quantification to be imprecise makes exact validity/reliability possible. But is imprecision and exact validity compatible with attainment of statistical efficiency? This paper gives an affirmative answer to this question via a new possibilistic Bernstein-von Mises theorem that parallels a fundamental result in Bayesian inference. Among other things, our result demonstrates that the IM solution is asymptotically efficient in the sense that, asymptotically, its credal set is the smallest that contains the Gaussian distribution with variance equal to the Cramer-Rao lower bound.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 50 条
  • [31] NONPARAMETRIC BERNSTEIN-VON MISES THEOREMS IN GAUSSIAN WHITE NOISE
    Castillo, Ismael
    Nickl, Richard
    ANNALS OF STATISTICS, 2013, 41 (04): : 1999 - 2028
  • [32] ADAPTIVE BERNSTEIN-VON MISES THEOREMS IN GAUSSIAN WHITE NOISE
    Ray, Kolyan
    ANNALS OF STATISTICS, 2017, 45 (06): : 2511 - 2536
  • [33] BERNSTEIN-VON MISES THEOREMS FOR GAUSSIAN REGRESSION WITH INCREASING NUMBER OF REGRESSORS
    Bontemps, Dominique
    ANNALS OF STATISTICS, 2011, 39 (05): : 2557 - 2584
  • [34] Bernstein-von Mises Theorems and Uncertainty Quantification for Linear Inverse Problems
    Giordano, Matteo
    Kekkonen, Hanne
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 342 - 373
  • [35] Bernstein-von Mises theorems for statistical inverse problems I: Schrodinger equation
    Nickl, Richard
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (08) : 2697 - 2750
  • [36] Critical dimension in the semiparametric Bernstein—von Mises theorem
    Maxim E. Panov
    Vladimir G. Spokoiny
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 232 - 255
  • [37] The Bernstein-Von-Mises theorem under misspecification
    Kleijn, B. J. K.
    van der Vaart, A. W.
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 354 - 381
  • [38] Bernstein-von Mises theorems for statistical inverse problems II: compound Poisson processes
    Nickl, Richard
    Sohl, Jakob
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 3513 - 3571
  • [39] A semiparametric Bernstein–von Mises theorem for Gaussian process priors
    Ismaël Castillo
    Probability Theory and Related Fields, 2012, 152 : 53 - 99
  • [40] DEGENERATE CONVERGENCE AND VON MISES-BERNSTEIN THEOREM FOR POSTERIOR DISTRIBUTIONS
    BORWANKE.JD
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (03): : 954 - &