Large-Sample Theory for Inferential Models: A Possibilistic Bernstein-von Mises Theorem

被引:1
|
作者
Martin, Ryan [1 ]
Williams, Jonathan P. [1 ]
机构
[1] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Asymptotics; Bayesian; belief; fiducial; relative likelihood; BELIEF FUNCTIONS; CONFIDENCE;
D O I
10.1007/978-3-031-67977-3_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The inferential model (IM) framework offers alternatives to the familiar probabilistic (e.g., Bayesian and fiducial) uncertainty quantification in statistical inference. Allowing uncertainty quantification to be imprecise makes exact validity/reliability possible. But is imprecision and exact validity compatible with attainment of statistical efficiency? This paper gives an affirmative answer to this question via a new possibilistic Bernstein-von Mises theorem that parallels a fundamental result in Bayesian inference. Among other things, our result demonstrates that the IM solution is asymptotically efficient in the sense that, asymptotically, its credal set is the smallest that contains the Gaussian distribution with variance equal to the Cramer-Rao lower bound.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 50 条
  • [21] Bernstein-von Mises theorem and Bayes estimation from single server queues
    Singh, Saroja Kumar
    Acharya, Sarat Kumar
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (02) : 286 - 296
  • [22] The Bernstein-von Mises theorem and spectral asymptotics of Bayes estimators for parabolic SPDES
    Bishwal, JPN
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 : 287 - 298
  • [23] Semiparametric Bernstein-von Mises theorem and bias, illustrated with Gaussian process priors
    Castillo, Ismael
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2012, 74 (02): : 194 - 221
  • [24] On the Rate of Convergence in the Bernstein-von Mises Theorem for M/M/1 Queue
    Singh, Saroja Kumar
    Acharya, Sarat Kumar
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2021, 22 (01) : 181 - 200
  • [25] High-dimensional Bernstein-von Mises theorem for the Diaconis-Ylvisaker prior
    Jin, Xin
    Bhattacharya, Anirban
    Ghosh, Riddhi Pratim
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 200
  • [26] Semiparametric Bernstein-von Mises for the error standard deviation
    de Jonge, Rene
    van Zanten, Harry
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 217 - 243
  • [27] ON THE BERNSTEIN-VON MISES PHENOMENON FOR NONPARAMETRIC BAYES PROCEDURES
    Castillo, Ismael
    Nickl, Richard
    ANNALS OF STATISTICS, 2014, 42 (05): : 1941 - 1969
  • [28] Bernstein-von Mises theorems for functionals of the covariance matrix
    Gao, Chao
    Zhou, Harrison H.
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 1751 - 1806
  • [29] Finite Sample Bernstein - von Mises Theorem for Semiparametric Problems
    Panov, Maxim
    Spokoiny, Vladimir
    BAYESIAN ANALYSIS, 2015, 10 (03): : 665 - 710
  • [30] On the Bernstein-von Mises phenomenon in the Gaussian white noise model
    Leahu, Haralambie
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 373 - 404