Large-Sample Theory for Inferential Models: A Possibilistic Bernstein-von Mises Theorem

被引:1
|
作者
Martin, Ryan [1 ]
Williams, Jonathan P. [1 ]
机构
[1] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Asymptotics; Bayesian; belief; fiducial; relative likelihood; BELIEF FUNCTIONS; CONFIDENCE;
D O I
10.1007/978-3-031-67977-3_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The inferential model (IM) framework offers alternatives to the familiar probabilistic (e.g., Bayesian and fiducial) uncertainty quantification in statistical inference. Allowing uncertainty quantification to be imprecise makes exact validity/reliability possible. But is imprecision and exact validity compatible with attainment of statistical efficiency? This paper gives an affirmative answer to this question via a new possibilistic Bernstein-von Mises theorem that parallels a fundamental result in Bayesian inference. Among other things, our result demonstrates that the IM solution is asymptotically efficient in the sense that, asymptotically, its credal set is the smallest that contains the Gaussian distribution with variance equal to the Cramer-Rao lower bound.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 50 条
  • [1] Asymptotic efficiency of inferential models and a possibilistic Bernstein-von Mises theorem
    Martin, Ryan
    Williams, Jonathan P.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2025, 180
  • [2] THE BERNSTEIN-VON MISES THEOREM AND NONREGULAR MODELS
    Bochkina, Natalia A.
    Green, Peter J.
    ANNALS OF STATISTICS, 2014, 42 (05): : 1850 - 1878
  • [3] THE SEMIPARAMETRIC BERNSTEIN-VON MISES THEOREM
    Bickel, P. J.
    Kleijn, B. J. K.
    ANNALS OF STATISTICS, 2012, 40 (01): : 206 - 237
  • [4] A BERNSTEIN-VON MISES THEOREM FOR SMOOTH FUNCTIONALS IN SEMIPARAMETRIC MODELS
    Castillo, Ismael
    Rousseau, Judith
    ANNALS OF STATISTICS, 2015, 43 (06): : 2353 - 2383
  • [5] The Bernstein-von Mises theorem in semiparametric competing risks models
    De Blasi, Pierpaolo
    Hjort, Nils Lid
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2316 - 2328
  • [6] BERNSTEIN-VON MISES THEOREM FOR MARKOV PROCESSES
    BORWANKER, J
    KALLIANP.G
    RAO, BLSP
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (04): : 1241 - +
  • [7] On the Bernstein-von Mises theorem for the Dirichlet process
    Ray, Kolyan
    van der Vaart, Aad
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 2224 - 2246
  • [8] BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY
    Rivoirard, Vincent
    Rousseau, Judith
    ANNALS OF STATISTICS, 2012, 40 (03): : 1489 - 1523
  • [9] A Bernstein-Von Mises Theorem for discrete probability distributions
    Boucheron, S.
    Gassiat, E.
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 114 - 148
  • [10] Critical dimension in the semiparametric Bernstein-von Mises theorem
    Panov, Maxim E.
    Spokoiny, Vladimir G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 (01) : 232 - 255