Origin of Enhanced Oxygen Evolution in Restructured Metal-Organic Frameworks for Anion Exchange Membrane Water Electrolysis

被引:7
作者
Li, Ying [1 ]
Yang, Liu [2 ]
Hao, Xiaolei [4 ]
Xu, Xiaopei [3 ]
Xu, Lingling [5 ]
Wei, Bo [1 ]
Chen, Zhongwei [2 ]
机构
[1] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Power Battery & Syst Res Ctr, State Key Lab Catalysis, Dalian 110623, Peoples R China
[3] Henan Univ Technol, Dept Phys, Zhengzhou 450001, Henan, Peoples R China
[4] Dalian Univ Technol, Sch Optoelect Engn & Instrumentat Sci, Dalian 116024, Peoples R China
[5] Harbin Normal Univ, Sch Phys & Elect Engn, Harbin 150025, Peoples R China
基金
中国国家自然科学基金;
关键词
metal-organic framework; dynamic reconstruction; in situ Raman; oxygen evolution reaction; anion exchange membrane water electrolysis; OXIDATION;
D O I
10.1002/anie.202413916
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-Organic Frameworks (MOFs), praised for structural flexibility and tunability, are prominent catalyst prototypes for exploring oxygen evolution reaction (OER). Yet, their intricate transformations under OER, especially in industrial high-current environments, pose significant challenges in accurately elucidating their structure-activity correlation. Here, we harnessed an electrooxidation process for controllable MOF reconstruction, discovering that Fe doping expedites Ni(Fe) MOF structural evolution, accompanied by the elongation of Ni-O bonds, monitored by in situ Raman and UV/Visible spectroscopy. Theoretical modeling further reveals that Fe doping and defect-induced tensile strain in the NiO6 octahedra augments the metal ds-O p hybridization, optimizing their adsorption behavior and augmenting OER activity. The reconstructed Ni(Fe) MOF, serving as the anode in anion exchange membrane water electrolysis, achieves a noteworthy current density of 3300mAcm(-2) at 2.2V while maintaining equally stable operation 500mAcm(-2) for 300h and 1000mAcm(-2) for 170h. This undertaking elevates our comprehension of OER catalyst reconstruction, furnishing promising avenues for designing highly efficacious catalysts across electrochemical platforms.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Nanorod-like NiFe metal-organic frameworks for oxygen evolution in alkaline seawater media
    Xiao, Liyuan
    Han, Jingyi
    Wang, Zhenlu
    Guan, Jingqi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (62) : 23776 - 23784
  • [32] Active Site Tailoring of Metal-Organic Frameworks for Highly Efficient Oxygen Evolution
    Hu, Feng
    Yu, Deshuang
    Zeng, Wen-Jing
    Lin, Zih-Yi
    Han, Silin
    Sun, Yajie
    Wang, Hui
    Ren, Jianwei
    Hung, Sung-Fu
    Li, Linlin
    Peng, Shengjie
    ADVANCED ENERGY MATERIALS, 2023, 13 (29)
  • [33] In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction
    He, Kai
    Cao, Zhen
    Liu, Ruirui
    Miao, Ya
    Ma, Houyi
    Ding, Yi
    NANO RESEARCH, 2016, 9 (06) : 1856 - 1865
  • [34] Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis
    Li, Fei-Long
    Shao, Qi
    Huang, Xiaoqing
    Lang, Jian-Ping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (07) : 1888 - 1892
  • [35] Ligand Modulation in Metal-Organic Frameworks Derived Regenerable Oxygen Evolution Electrocatalysts
    Wang, Xiao
    Peng, Zheng
    Zhou, Wei
    Chen, Xiaokang
    Tan, Yi
    Huang, Yi-Fan
    Liu, Zhi
    Deng, Wei-Qiao
    Wu, Hao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [36] In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction
    Kai He
    Zhen Cao
    Ruirui Liu
    Ya Miao
    Houyi Ma
    Yi Ding
    Nano Research, 2016, 9 : 1856 - 1865
  • [37] 2D metal-organic frameworks and their derivatives for the oxygen evolution reaction
    Chang, Guanru
    Zhang, Hui
    Yu, Xin-Yao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [38] Recent advances of metal-organic frameworks and their composites toward oxygen evolution electrocatalysis
    Song, X. Z.
    Zhang, N.
    Wang, X. F.
    Tan, Z.
    MATERIALS TODAY ENERGY, 2021, 19
  • [39] 2D metal-organic frameworks and their derivatives for the oxygen evolution reaction
    Chang, Guanru
    Zhang, Hui
    Yu, Xin-Yao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [40] Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction
    Jia Lei
    Mengqi Zeng
    Lei Fu
    Chemical Research in Chinese Universities, 2020, 36 : 504 - 510