Revealing structure-performance relationship of biomimetic cyclodextrin metal-organic framework composite electrolytes for dendrite-free lithium metal batteries

被引:0
作者
Zeng, Xiaoyue [1 ]
Zhu, Huirong [1 ]
Yuan, Haocheng [1 ]
Lan, Jinle [1 ]
Yu, Yunhua [1 ]
Lee, Young-Seak [2 ,3 ]
Yang, Xiaoping [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, North Third Ring Rd 15, Beijing 100029, Peoples R China
[2] Chungnam Natl Univ, Dept Chem Engn & Appl Chem, Daejeon 34134, South Korea
[3] Chungnam Natl Univ, Inst Carbon Fus Technol InCFT, Daejeon 34134, South Korea
关键词
Cyclodextrin metal-organic frameworks; Structure-performance relationships; Ion-sieving capacity; Solvation structure; Dendrite-free lithium metal battery; MEMBRANE;
D O I
10.1016/j.jcis.2025.01.164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cyclodextrin metal-organic frameworks (CD-MOFs) with infinitely extensible network structures show potential applications in lithium metal batteries. However, the disordered accumulation of CD-MOF particles leads to slow interparticle diffusion of ions, so the CD-MOF composite electrolytes are needed to be developed. In addition, the influences of CD-MOFs structure on the electrochemical performance of the composite electrolytes remains unclear. Herein, a series of CD-MOF composite electrolytes (BCDM-X) were prepared via in-situ growth of various CD-MOFs on bacterial cellulose (BC) fibers to research the structure-performance relationship of the CD-MOF composite electrolytes. The difference in host-guest interactions and the solvation structures of the BCDM-X were confirmed by FTIR, Raman spectroscopes and theoretical calculations. It is demonstrated that the BCDM1 electrolyte with an open multilevel hierarchical pore structure and a moderate pore size 1 to 2 times the size of anion profits for ion-sieving and regulation of solvation structure as the beat one. Therefore, the BCDM-1 electrolyte achieves high lithium-ion transference number (0.82), good ionic conductivity (1.61 mS cm- 1), wide electrochemical stability window (5.1 V), and stable long-term Li plating/stripping cycling over 1500 h at 0.2 mA cm- 2. By realizing homogeneous Li+ flux, the BCDM-1 composite electrolyte can inhibit the growth of lithium dendrites on the Li metal anode, prevent electrolyte decomposition, and facilitate the formation of a durable LiF
引用
收藏
页码:1 / 13
页数:13
相关论文
共 66 条
  • [1] Shan X., Zhong Y., Zhang L., Zhang Y., Xia X., Wang X., Tu J., A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives, J. Phys. Chem. C, 125, pp. 19060-19080, (2021)
  • [2] Kim M.S., Zhang Z., Rudnicki P.E., Yu Z., Wang J., Wang H., Oyakhire S.T., Chen Y., Kim S.C., Zhang W., Boyle D.T., Kong X., Xu R., Huang Z., Huang W., Bent S.F., Wang L.-W., Qin J., Bao Z., Cui Y., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries, Nat. Mater., 21, pp. 445-454, (2022)
  • [3] Xia S., Wu X., Zhang Z., Cui Y., Liu W., Practical challenges and future perspectives of all-solid-state lithium-metal batteries, Chem, 5, pp. 753-785, (2019)
  • [4] Fu X., Shang C., Yang M., Akinoglu E.M., Wang X., Zhou G., An ion-conductive separator for high safety Li metal batteries, J. Power Sources, 475, (2020)
  • [5] Paul P.P., McShane E.J., Colclasure A.M., Balsara N., Brown D.E., Cao C., Chen B.-R., Chinnam P.R., Cui Y., Dufek E.J., Finegan D.P., Gillard S., Huang W., Konz Z.M., Kostecki R., Liu F., Lubner S., Prasher R., Preefer M.B., Qian J., Rodrigues M.-T.-F., Schnabel M., Son S.-B., Srinivasan V., Steinruck H.-G., Tanim T.R., Toney M.F., Tong W., Usseglio-Viretta F., Wan J., Yusuf M., McCloskey B.D., Nelson Weker J., A review of existing and emerging methods for lithium detection and characterization
  • [6] Li H., Wu D., Wu J., Dong L.-Y., Zhu Y.-J., Hu X., Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries, Adv. Mater., 29, (2017)
  • [7] Du M., Peng Z., Long X., Huang Z., Lin Z., Yang J., Ding K., Chen L., Hong X.-J., Cai Y.-P., Zheng Q., Tuning the metal ions of Prussian blue analogues in separators to enable high-power lithium metal batteries, Nano Lett., 22, pp. 4861-4869, (2022)
  • [8] Piao N., Liu S., Zhang B., Ji X., Fan X., Wang L., Wang P.-F., Jin T., Liou S.-C., Yang H., Jiang J., Xu K., Schroeder M.A., He X., Wang C., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes, ACS Energy Lett., 6, pp. 1839-1848, (2021)
  • [9] Chen W., Hu Y., Lv W., Lei T., Wang X., Li Z., Zhang M., Huang J., Du X., Yan Y., He W., Liu C., Liao M., Zhang W., Xiong J., Yan C., Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition, Nat. Commun., 10, (2019)
  • [10] Zeng J., Liu Q., Jia D., Liu R., Liu S., Zheng B., Zhu Y., Fu R., Wu D., A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries, Energy Storage Mater., 41, pp. 697-702, (2021)