Microwave-assisted pyrolysis of biomass for efficient H2-rich syngas production promoted by calcium oxide

被引:1
作者
Zeng, Chen [1 ]
Jiang, Zhiwei [1 ]
Zeng, Yongjian [1 ]
Zhang, Suyu [1 ]
Luque, Rafael [2 ,3 ]
Yan, Kai [1 ]
机构
[1] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangdong Prov Key Lab Environm Pollut Control & R, Guangzhou 510275, Peoples R China
[2] Peoples Friendship Univ Russia RUDN Univ, 6 Miklukho Maklaya Str, Moscow 117198, Russia
[3] Univ ECOTEC, Km 13-5 Samborondon, EC-092302 Samborondon, Ecuador
基金
中国国家自然科学基金;
关键词
Biomass; Microwave-assisted pyrolysis; Pearl-like calcium oxide; H2-rich syngas; CO2; absorption; GAS SHIFT REACTION; CELLULOSE; GASIFICATION; TEMPERATURE;
D O I
10.1016/j.cej.2025.159905
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
H-2-rich syngas production via microwave-assisted pyrolysis (MAP) of lignocellulosic biomass has recently gained significant attention in biorefineries. Herein, a novel pearl-like calcium oxide (P-CaO) was developed to investigate the dual roles of CaO in H-2 enhancement and CO2 absorption during MAP of lignocellulosic biomass, dedicated to achieving high production of H-2-rich syngas. Utilizing a self-constructed MAP system, the different catalytic performance between P-CaO and other metal oxides were examined, revealing that our P-CaO produced the highest H-2 yield (257 NmL/g(corn stover), 7.6 times higher than no-catalyst group and 2.2 times higher than commercial CaO group), and lowest CO2 production (44 NmL/g(feedstock)), with syngas purity exceeding 72 vol% at 600 degrees C. This increase in H-2-rich syngas production demonstrated universal applicability across other biomass feedstocks. Finally, the study delved into the microstructural changes and phase transition mechanisms of P-CaO, shedding insights into gas formation pathways. The P-CaO nanoparticles, with abundant alkaline sites, excellent adsorption capacity and large specific surface area due to aggregate, facilitate the secondary cracking of organic intermediates like phenols, thus promoting the production of H-2, while CO2 adsorption derives a favorable shift in the water-gas shift equilibrium. These findings are expected to offer critical insights and serve as a reference for the development of efficient catalysts in the next-generation hydrogen industry.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Conversion of Biomass to Hydrocarbon-rich Bio-oil via Microwave-assisted Catalytic Pyrolysis: A Review
    Wang Yunpu
    Zhang Shumei
    Yu Zhenting
    Jiang Lin
    Liu Yuhuan
    Ruan Roger
    Fu Guiming
    CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2018, 20 (03) : 7 - 16
  • [42] Conversion of Biomass to Hydrocarbon-rich Bio-oil via Microwave-assisted Catalytic Pyrolysis: A Review
    Wang Yunpu
    Zhang Shumei
    Yu Zhenting
    Jiang Lin
    Liu Yuhuan
    Ruan Roger
    Fu Guiming
    China Petroleum Processing & Petrochemical Technology, 2018, 20 (03) : 7 - 16
  • [43] La-doped Ni/ZrO2 catalyst for the production of H2-rich gas by upgrading vapors coming from pyrolysis of biomass and co-pyrolysis of biomass with plastic
    Jedrzejczyk, Marcin
    Podlaska, Aleksandra
    Cieluch, Kamil
    Ryczkowski, Robert
    Goscianska, Joanna
    Grams, Jacek
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 1496 - 1510
  • [44] H2-rich gas production from co-gasification of biomass/plastics blends: A modeling approach
    Cao, Yan
    Bai, Yu
    Du, Jiang
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 112
  • [45] Challenges and opportunities in the production of sustainable hydrogen from lignocellulosic biomass using microwave-assisted pyrolysis: A review
    Sridevi, Veluru
    Surya, Dadi Venkata
    Reddy, Busigari Rajasekhar
    Shah, Manan
    Gautam, Ribhu
    Kumar, Tanneru Hemanth
    Puppala, Harish
    Pritam, Kocherlakota Satya
    Basak, Tanmay
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 507 - 531
  • [46] Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location
    Mokhta, Zafri Mohd
    Ong, Mei Yin
    Salman, Bello
    Nomanbhaya, Saifuddin
    Salleh, Siti Fatihah
    Chew, Kit Wayne
    Show, Pau-Loke
    Chen, Wei-Hsin
    ENERGY, 2020, 190
  • [47] H2-rich syngas production through mixed residual biomass and HDPE waste via integrated catalytic gasification and tar cracking plus bio-char upgrading
    Esfahani, Reza Alipour Moghadam
    Osmieri, Luigi
    Specchia, Stefania
    Yusup, Suzana
    Tavasoli, Ahmad
    Zamaniyan, Akbar
    CHEMICAL ENGINEERING JOURNAL, 2017, 308 : 578 - 587
  • [48] Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system
    Liu, Lina
    Wang, Qiang
    Ahmad, Shakeel
    Yang, Xiaoyi
    Ji, Mengru
    Sun, Yifei
    JOURNAL OF THE ENERGY INSTITUTE, 2018, 91 (06) : 927 - 939
  • [49] Microwave-assisted biomass pyrolysis polygeneration process using a scaled-up reactor: Product characterization, thermodynamic assessment and bio-hydrogen production
    Parvez, Ashak Mahmud
    Afzal, Muhammad T.
    Jiang, Peng
    Wu, Tao
    BIOMASS & BIOENERGY, 2020, 139
  • [50] Catalytic pyrolysis of waste printed circuit board with copper slag for the production of H2-rich gas
    Zhu, Yunfeng
    Li, Bo
    Wei, Yonggang
    Zhou, Shiwei
    Wang, Hua
    FUEL, 2024, 357