Terrain parameter identification for wheeled mobile robots using deep neural networks

被引:0
作者
Bayat, Amir [1 ]
Azimi, Ali [1 ]
Taghvaeipour, Afshin [1 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Mech Engn, Tehran, Iran
关键词
Soil parameter estimation; artificial neural networks; semi-empirical models; dynamic simulation; sensitivity analysis; SOIL INTERACTION; INTERACTION-MODEL; PREDICTION; DYNAMICS; SINKAGE; ROVERS;
D O I
10.1080/15397734.2024.2423764
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper introduces an innovative approach to soil parameter estimation using deep artificial neural networks (ANN) tailored to estimate a wide range of soil types. Previous research in this field has relied on limited datasets and oversimplified assumptions in semi-empirical models. In this work, the sensitivity of stress distribution is analyzed with respect to soil parameters, revealing significant errors resulting from the simplifications in semi-empirical models and emphasizing the need for more accurate estimation methods with minimal reliance on simplifying assumptions. Training an ANN requires a comprehensive dataset, which has been a challenge due to limited access to diverse soil samples. Addressing this issue, the paper conducts simulations of a single wheel's movement across a wide range of soil parameter combinations to generate the required dataset. These simulations are done using a dynamic motion-compliant semi-empirical model detailed in the article. Subsequently, the network's hyperparameters are fine-tuned through a grid search, followed by extensive training of the optimized ANN model. In the end, the ANN demonstrates promising performance in accurately estimating soil parameters, validated through simulation results of both single wheel and Mars rover motion.
引用
收藏
页码:3278 / 3303
页数:26
相关论文
共 82 条
[1]   Predicting buckling loads of perforated rectangular isotropic panels using Gene Expression Programming and Artificial Neural Network [J].
Al Qablan, Husam ;
Al-Qablan, Tamara .
MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2024, 52 (08) :5174-5194
[2]   Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater [J].
Arvidson, R. E. ;
Bell, J. F., III ;
Bellutta, P. ;
Cabrol, N. A. ;
Catalano, J. G. ;
Cohen, J. ;
Crumpler, L. S. ;
Marais, D. J. Des ;
Estlin, T. A. ;
Farrand, W. H. ;
Gellert, R. ;
Grant, J. A. ;
Greenberger, R. N. ;
Guinness, E. A. ;
Herkenhoff, K. E. ;
Herman, J. A. ;
Iagnemma, K. D. ;
Johnson, J. R. ;
Klingelhoefer, G. ;
Li, R. ;
Lichtenberg, K. A. ;
Maxwell, S. A. ;
Ming, D. W. ;
Morris, R. V. ;
Rice, M. S. ;
Ruff, S. W. ;
Shaw, A. ;
Siebach, K. L. ;
de Souza, P. A. ;
Stroupe, A. W. ;
Squyres, S. W. ;
Sullivan, R. J. ;
Talley, K. P. ;
Townsend, J. A. ;
Wang, A. ;
Wright, J. R. ;
Yen, A. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2010, 115
[3]  
Azimi A., 2012, 50 AIAA AER SCI M IN, DOI [10.2514/6.2012-804, DOI 10.2514/6.2012-804]
[4]  
Azimi A., 2014, THESIS MCGILL U MONT
[5]   A Multibody Dynamics Framework for Simulation of Rovers on Soft Terrain [J].
Azimi, Ali ;
Holz, Daniel ;
Koevecses, Jozsef ;
Angeles, Jorge ;
Teichmann, Marek .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (03)
[6]   Wheel-Soil Interaction Model for Rover Simulation and Analysis Using Elastoplasticity Theory [J].
Azimi, Ali ;
Koevecses, Jozsef ;
Angeles, Jorge .
IEEE TRANSACTIONS ON ROBOTICS, 2013, 29 (05) :1271-1288
[7]   Neural network estimation of soil reaction in rigid wheel and soft terrain interaction based on modified dynamic model [J].
Bayat, Amir ;
Azimi, Ali ;
Taghvaeipour, Afshin .
2022 10TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2022, :61-66
[8]  
Bekker M.G., 1956, THEORY LAND LOCOMOTI
[9]  
Brixius W. W., 1987, Paper, American Society of Agricultural Engineers
[10]   Push-pull locomotion: Increasing travel velocity in loose regolith via induced wheel slip [J].
Cao, Cyndia ;
Moon, Deaho ;
Creager, Colin ;
Lieu, Dennis K. ;
Stuart, Hannah S. .
JOURNAL OF TERRAMECHANICS, 2023, 110 :87-99