Background: Buffaloes are considered an indispensable genetic resource for dairy production. However, improvements in lactation performance have been relatively limited. Advances in sequencing technology, combined with genome-wide association studies, have facilitated the breeding of high-quality buffalo. Methods: We conducted an integrated analysis of genomic sequencing data from 120 water buffalo, the high-quality water buffalo genome assembly designated as UOA_WB_1, and milk production traits, including 305-day milk yield (MY), peak milk yield (PM), total protein yield (PY), protein percentage (PP), fat percentage (FP), and total milk fat yield (FY). Results: The results identified 56 significant SNPs, and based on these markers, 54 candidate genes were selected. These candidate genes were significantly enriched in lactation-related pathways, such as the cAMP signaling pathway (ABCC4), TGF-beta signaling pathway (LEFTY2), Wnt signaling pathway (CAMK2D), and metabolic pathways (DGAT1). Conclusions: These candidate genes (e.g., ABCC4, LEFTY2, CAMK2D, DGAT1) provide a substantial theoretical foundation for molecular breeding to enhance milk production in buffaloes.