Heading control of USV based on fractional-order model predictive control

被引:2
作者
Zhao, Shiquan [1 ]
Mu, Jingru [1 ]
Liu, Hongdan [1 ]
Sun, Yue [2 ]
Cajo, Ricardo [3 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, 145 Nantong St,Liaoyuan St, Harbin 150001, Peoples R China
[2] Shanghai Marine Diesel Engine Res Inst, 3111 Huaning Rd, Shanghai 201108, Peoples R China
[3] Escuela Super Politecn Litora, Fac Ingn Electr & Comp, Campus Gustavo Galindo Km 30-5 Via Perimetral,POB, Guayaquil 090150, Ecuador
关键词
Model predictive control; Heading control; Fractional-order calculus; Linear estimate state observer;
D O I
10.1016/j.oceaneng.2025.120476
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Research on the stability of Unmanned Surface Vehicle (USV) heading control remains a crucial focus in the field of maritime applications. When navigating at the sea, environmental disturbances caused by the wind, waves and currents significantly impact the USV's ability to maintain its heading. This study introduces Fractional Order Model Predictive Control (FOMPC) within the framework of Extended Predictive Self-Adaptive Control (EPSAC) for USV heading control. A fractional-order cost function is developed, replacing the integer weight factor with a fractional-order operator. To suppress the disturbance and address the oscillation issues in rudder angle input under specific fractional-order parameters, a Linear Extended State Observer (LESO) incorporated to estimate the system states. Comparative simulations reveal that the proposed fractional-order MPC with the extended state observer outperforms traditional integer-order MPC in sustaining USV heading under disturbances.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Sliding-Mode Tracking Control of Surface Vessels [J].
Ashrafiuon, Hashem ;
Muske, Kenneth R. ;
McNinch, Lucas C. ;
Soltan, Reza A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (11) :4004-4012
[2]   Sampling sea surfaces with SESAMO [J].
Caccia, M ;
Bono, R ;
Bruzzone, G ;
Bruzzone, G ;
Spirandelli, E ;
Veruggio, G ;
Stortini, AM ;
Capodaglio, G .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2005, 12 (03) :95-105
[3]   Distributed Formation Control for Multiagent Systems Using a Fractional-Order Proportional-Integral Structure [J].
Cajo, Ricardo ;
Guinaldo, Maria ;
Fabregas, Ernesto ;
Dormido, Sebastian ;
Plaza, Douglas ;
De Keyser, Robain ;
Ionescu, Clara .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (06) :2738-2745
[4]  
Cajo Ricardo, 2020, P CONTROLO SEP, P528
[5]   Fault-tolerant adaptive control allocation schemes for overactuated systems [J].
Casavola, Alessandro ;
Garone, Emanuele .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2010, 20 (17) :1958-1980
[6]   Orientation-aware ship detection via a rotation feature decoupling supported deep learning approach [J].
Chen, Xinqiang ;
Wu, Hao ;
Han, Bing ;
Liu, Wei ;
Montewka, Jakub ;
Liu, Ryan Wen .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125
[7]   Fractional Order Distributed Model Predictive Control of Fast and Strong Interacting Systems [J].
Chi, Chuanguo ;
Cajo, Ricardo ;
Zhao, Shiquan ;
Liu, Guo-Ping ;
Ionescu, Clara-Mihaela .
FRACTAL AND FRACTIONAL, 2022, 6 (04)
[8]   Flexible unmanned surface vehicles control using probabilistic model-based reinforcement learning with hierarchical Gaussian distribution [J].
Cui, Yunduan ;
Xu, Kun ;
Zheng, Chunhua ;
Liu, Jia ;
Peng, Lei ;
Li, Huiyun .
OCEAN ENGINEERING, 2023, 285
[9]   Filtered Probabilistic Model Predictive Control-Based Reinforcement Learning for Unmanned Surface Vehicles [J].
Cui, Yunduan ;
Peng, Lei ;
Li, Huiyun .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) :6950-6961
[10]   Autonomous boat driving system using sample-efficient model predictive control-based reinforcement learning approach [J].
Cui, Yunduan ;
Osaki, Shigeki ;
Matsubara, Takamitsu .
JOURNAL OF FIELD ROBOTICS, 2021, 38 (03) :331-354