Initialization-enhanced physics-informed neural network with domain decomposition (IDPINN)

被引:0
作者
Si, Chenhao [1 ]
Yan, Ming [1 ]
机构
[1] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen 518172, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Physics-informed neural network; Domain decomposition; Initialization; DEEP LEARNING FRAMEWORK; XPINNS;
D O I
10.1016/j.jcp.2025.113914
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a new physics-informed neural network framework, IDPINN, which improves the prediction accuracy of PINNs through initialization and domain decomposition. First, we train a PINN on a small dataset to obtain an initial network structure, including weight matrices and bias vectors. This trained network is then used to initialize the PINNs for each sub-domain in the domain decomposition. Moreover, we impose a smoothness condition at the interface to further improve prediction performance. We numerically evaluated IDPINN on several forward problems and demonstrated its advantages.
引用
收藏
页数:21
相关论文
共 50 条
[21]   Physics-informed Neural Network for Quadrotor Dynamical Modeling [J].
Gu, Weibin ;
Primatesta, Stefano ;
Rizzo, Alessandro .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 171
[22]   GPINN: Physics-Informed Neural Network with Graph Embedding [J].
Miao, Yuyang ;
Li, Haolin ;
Mandic, Danilo .
2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
[23]   A physics-informed neural network for Kresling origami structures [J].
Liu, Chen-Xu ;
Wang, Xinghao ;
Liu, Weiming ;
Yang, Yi-Fan ;
Yu, Gui-Lan ;
Liu, Zhanli .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269
[24]   Realizing the Potential of Physics-Informed Neural Network in Modelling [J].
Kheirandish, Zahra ;
Schulz, Wolfgang .
JOURNAL OF LASER MICRO NANOENGINEERING, 2024, 19 (03) :209-213
[25]   Physics-informed neural network for random response evaluation [J].
Zhou, Yuling ;
Tang, Bo ;
Wang, Jie ;
Nie, Deming ;
Xu, Ming ;
Zhang, Kai .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 176
[26]   A novel physics-informed neural network for modeling electromagnetism of a permanent magnet synchronous motor [J].
Son, Seho ;
Lee, Hyunseung ;
Jeong, Dayeon ;
Oh, Ki-Yong ;
Sun, Kyung Ho .
ADVANCED ENGINEERING INFORMATICS, 2023, 57
[27]   Physics-informed neural network for engineers: a review from an implementation aspect [J].
Ryu, Ikhyun ;
Park, Gyu-Byung ;
Lee, Yongbin ;
Choi, Dong-Hoon .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (07) :3499-3519
[28]   A Physics-Informed Neural Network Approach for Solving Structural Eigenvalue Problem [J].
Yoo, Seongjoon ;
Kang, Minseo ;
Yoon, Heonjun ;
Kim, Taejin .
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2025,
[29]   Physics-informed Neural Implicit Flow neural network for parametric PDEs [J].
Xiang, Zixue ;
Peng, Wei ;
Yao, Wen ;
Liu, Xu ;
Zhang, Xiaoya .
NEURAL NETWORKS, 2025, 185
[30]   ENHANCING TRAINING OF PHYSICS-INFORMED NEURAL NETWORKS USING DOMAIN DECOMPOSITION-BASED PRECONDITIONING STRATEGIES [J].
Kopanicakova, Alena ;
Kothari, Hardik ;
Karniadakis, George E. ;
Krause, Rolf .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (05) :S46-S67