The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels

被引:1
|
作者
Liu, Tianyuan [1 ]
Zhang, Haixiang [1 ]
Yang, Xuehua [1 ]
机构
[1] Hunan Univ Technol, Sch Sci, Zhuzhou 412007, Peoples R China
基金
中国国家自然科学基金;
关键词
Integro-partial differential equation; Compact difference scheme; Alternating direction implicit method; Weakly singular kernel; INTEGRODIFFERENTIAL EQUATIONS;
D O I
10.1007/s12190-025-02386-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research devises a rapid and effective numerical approach tailored to a three-dimensional integro-partial differential equation that encompasses three weakly singular kernels. The second-order convolution quadrature rule is employed to approximate the Riemann-Liouvile integral term in time, and the compact difference scheme is utilized in space. Moreover, the Crank-Nicolson alternating direction implicit method is adopted. The discrete energy method is then used to rigorously prove the solvability, convergence, and stability of the constructed scheme. The convergence order is proved with order O(tau 2+hx4+hy4+hz4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\tau <^>{2}+h_{x}<^>{4}+h_{y}<^>{4}+h_{z}<^>{4})$$\end{document}, where tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} represents the time step, and hx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{x}$$\end{document}, hy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{y}$$\end{document}, hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{z}$$\end{document} are the step sizes in the x, y, z directions, respectively. The ADI algorithm is capable of converting the three-dimensional problem under discussion in this paper into the continuous solution of three one-dimensional problems, thereby circumventing the necessity of solving linear equations with large sparse matrices serving as coefficient matrices. This approach remarkably curtails the computational time. Finally, some numerical examples are provided to verify the accuracy of the theoretical analysis.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] A compact difference scheme for a partial integro-differential equation with a weakly singular kernel
    Luo, Man
    Xu, Da
    Li, Limei
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (02) : 947 - 954
  • [2] Fast ADI difference/compact difference schemes for the nonlocal evolution equation with weakly singular kernels in three dimensions
    Qiao, Leijie
    Xu, Da
    Tang, Bo
    Zhou, Jun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 194 : 329 - 347
  • [3] A high-order compact ADI finite difference scheme on uniform meshes for a weakly singular integro-differential equation in three space dimensions
    Wang, Yuan-Ming
    Zhang, Yu-Jia
    Zheng, Zi-Yun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):
  • [4] A high-order compact ADI finite difference scheme on uniform meshes for a weakly singular integro-differential equation in three space dimensions
    Yuan-Ming Wang
    Yu-Jia Zhang
    Zi-Yun Zheng
    Computational and Applied Mathematics, 2024, 43
  • [5] A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel
    Liu, Kai
    He, Zhangming
    Zhang, Haixiang
    Yang, Xuehua
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (02):
  • [6] A Compact Difference Scheme for the Time-Fractional Partial Integro-Differential Equation with a Weakly Singular Kernel
    Guo, Jing
    Xu, Da
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (05) : 1261 - 1279
  • [7] An efficient ADI difference scheme for the nonlocal evolution equation with multi-term weakly singular kernels in three dimensions
    Zhou, Ziyi
    Zhang, Haixiang
    Yang, Xuehua
    Tang, Jie
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (08) : 1719 - 1736
  • [8] A generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernels
    Sadri, Khadijeh
    Amilo, David
    Hincal, Evren
    Hosseini, Kamyar
    Salahshour, Soheil
    HELIYON, 2024, 10 (05)
  • [9] Compact finite difference scheme for the solution of a time fractional partial integro-differential equation with a weakly singular kernel
    Mohebbi, Akbar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7627 - 7639
  • [10] BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels
    Qiao, Leijie
    Xu, Da
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (12) : 3807 - 3820