Implicit neural representation for image demosaicking

被引:0
作者
Kerepecky, Tomas [1 ,2 ]
Sroubek, Filip [1 ]
Flusser, Jan [1 ]
机构
[1] Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, Prague, Czech Republic
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 78-7, Prague, Czech Republic
关键词
Demosaicking; Implicit neural representation; Inverse problems; JOINT DEMOSAICKING; RESTORATION; FIELDS;
D O I
10.1016/j.dsp.2025.105022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel approach to enhance image demosaicking algorithms using implicit neural representations (INR). Our method employs a multi-layer perceptron to encode RGB images, combining original Bayer measurements with an initial estimate from existing demosaicking methods to achieve superior reconstructions. A key innovation is the integration of two loss functions: a Bayer loss for fidelity to sensor data and a complementary loss that regularizes reconstruction using interpolated data from the initial estimate. This combination, along with INR's inherent ability to capture fine details, enables high-fidelity reconstructions that incorporate information from both sources. Furthermore, we demonstrate that INR can effectively correct artifacts in state-of-the-art demosaicking methods when input data diverge from the training distribution, such as in cases of noise or blur. This adaptability highlights the transformative potential of INR-based demosaicking, offering a robust solution to this challenging problem.
引用
收藏
页数:14
相关论文
共 40 条
[1]   Color TV: Total variation methods for restoration of vector-valued images [J].
Blomgren, P ;
Chan, TF .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :304-309
[2]  
Condat L, 2012, IEEE IMAGE PROC, P2781, DOI 10.1109/ICIP.2012.6467476
[3]  
Dupont E, 2022, PR MACH LEARN RES
[4]   Multiframe demosaicing and super-resolution of color images [J].
Farsiu, S ;
Elad, M ;
Milanfar, P .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (01) :141-159
[5]   CONSTRAINED RESTORATION AND THE RECOVERY OF DISCONTINUITIES [J].
GEMAN, D ;
REYNOLDS, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (03) :367-383
[6]   Deep Joint Demosaicking and Denoising [J].
Gharbi, Michael ;
Chaurasia, Gaurav ;
Paris, Sylvain ;
Durand, Fredo .
ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06)
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   Cascaded Displays: Spatiotemporal Superresolution using Offset Pixel Layers [J].
Heide, Felix ;
Lanman, Douglas ;
Reddy, Dikpal ;
Kautz, Jan ;
Pulli, Kari ;
Luebke, David .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04)
[9]   Joint demosaicing and denoising [J].
Hirakawa, Keigo ;
Parks, Thomas W. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (08) :2146-2157
[10]   INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings [J].
Kazerouni, Amirhossein ;
Azad, Reza ;
Hosseini, Alireza ;
Merhof, Dorit ;
Bagci, Ulas .
2024 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION, WACV 2024, 2024, :1287-1296