Moire Lattice of Twisted Bilayer Graphene as Template for Non-Covalent Functionalization

被引:0
作者
Dierke, Tobias [1 ]
Wolff, Stefan [1 ]
Gillen, Roland [1 ]
Eisenkolb, Jasmin [2 ,3 ]
Nagel, Tamara [2 ,3 ]
Maier, Sabine [1 ]
Kivala, Milan [4 ]
Hauke, Frank [2 ,3 ]
Hirsch, Andreas [2 ,3 ]
Maultzsch, Janina [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Chair Expt Phys, Dept Phys, Staudtstr 7, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Chair Organ Chem 2, Dept Chem & Pharm, Nikolaus Fiebiger Str 10, D-91058 Erlangen, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Ctr Adv Mat & Proc, Nikolaus Fiebiger Str 10, D-91058 Erlangen, Germany
[4] Heidelberg Univ, Organ Chem Inst, Neuenheimer Feld 270, D-69120 Heidelberg, Germany
关键词
2D materials; Density functional calculations; Functionalization; Graphene; Raman spectroscopy; REACTIVITY; ADSORPTION;
D O I
10.1002/anie.202414593
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a novel approach to achieve spatial variations in the degree of non-covalent functionalization of twisted bilayer graphene (tBLG). The tBLG with twist angles varying between similar to 5 degrees and 7 degrees was non-covalently functionalized with 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN) molecules. Our results show a correlation between the degree of functionalization and the twist angle of tBLG. This correlation was determined through Raman spectroscopy, where areas with larger twist angles exhibited a lower HATCN peak intensity compared to areas with smaller twist angles. We suggest that the HATCN adsorption follows the moire pattern of tBLG by avoiding AA-stacked areas and attach predominantly to areas with a local AB-stacking order of tBLG, forming an overall ABA-stacking configuration. This is supported by density functional theory (DFT) calculations. Our work highlights the role of the moire lattice in controlling the non-covalent functionalization of tBLG. Our approach can be generalized for designing nanoscale patterns on two-dimensional (2D) materials using moire structures as a template. This could facilitate the fabrication of nanoscale devices with locally controlled varying chemical functionality.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Twist Angle-Dependent Molecular Intercalation and Sheet Resistance in Bilayer Graphene [J].
Araki, Yuji ;
Solis-Fernandez, Pablo ;
Lin, Yung-Chang ;
Motoyama, Amane ;
Kawahara, Kenji ;
Maruyama, Mina ;
Gao, Yanlin ;
Matsumoto, Rika ;
Suenaga, Kazu ;
Okada, Susumu ;
Ago, Hiroki .
ACS NANO, 2022, 16 (09) :14075-14085
[2]   Covalent 2D Patterning, Local Electronic Structure and Polarization Switching of Graphene at the Nanometer Level [J].
Bao, Lipiao ;
Zhao, Baolin ;
Assebban, Mhamed ;
Halik, Marcus ;
Hauke, Frank ;
Hirsch, Andreas .
CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (34) :8709-8713
[3]   Moire bands in twisted double-layer graphene [J].
Bistritzer, Rafi ;
MacDonald, Allan H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) :12233-12237
[4]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[5]   Raman Signature of Graphene Superlattices [J].
Carozo, Victor ;
Almeida, Clara M. ;
Ferreira, Erlon H. M. ;
Cancado, Luiz Gustavo ;
Achete, Carlos Alberto ;
Jorio, Ado .
NANO LETTERS, 2011, 11 (11) :4527-4534
[6]   Tuning the Work Function of Graphene-on-Quartz with a High Weight Molecular Acceptor [J].
Christodoulou, C. ;
Giannakopoulos, A. ;
Nardi, M. V. ;
Ligorio, G. ;
Oehzelt, M. ;
Chen, L. ;
Pasquali, L. ;
Timpel, M. ;
Giglia, A. ;
Nannarone, S. ;
Norman, P. ;
Linares, M. ;
Parvez, K. ;
Muellen, K. ;
Beljonne, D. ;
Koch, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (09) :4784-4790
[7]   Self-Assembly of a Triphenylene-Based Electron Donor Molecule on Graphene: Structural and Electronic Properties [J].
de la Rie, Joris ;
Enache, Mihaela ;
Wang, Qiankun ;
Lu, Wenbo ;
Kivala, Milan ;
Stohr, Meike .
JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (23) :9855-9861
[8]   Simplified time-dependent density functional theory (sTD-DFT) for molecular optical rotation [J].
de Wergifosse, Marc ;
Seibert, Jakob ;
Grimme, Stefan .
JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (08)
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   Spatial Control of Graphene Functionalization by Patterning a 2D Substrate: Implications for Graphene Based van-der-Waals Heterostructures [J].
Dierke, Tobias ;
Dasler, Daniela ;
Nagel, Tamara ;
Hauke, Frank ;
Hirsch, Andreas ;
Maultzsch, Janina .
ACS APPLIED NANO MATERIALS, 2022, 5 (04) :4966-4971