Finite Autocapable Groups with the 2-Groups of Maximal Class

被引:0
作者
Bai, Pengfei [1 ]
Guo, Xiuyun [2 ]
Wang, Jiao [3 ]
机构
[1] Shanxi Univ Finance & Econ, Sch Appl Math, Taiyuan 030006, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Tianjin Sino German Univ Appl Sci, Basic Courses Dept, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
autocapable group; absolute center; 2-group of maximal class; P-GROUPS; SUBGROUPS;
D O I
10.1142/S1005386724000488
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A group H is said to be autocapable if there exists a group M such that H is isomorphic to the absolute central factor group M/L ( M ) of M. In this paper, we first prove that if N is a characteristic subgroup of an autocapable group H, then N is neither the generalized quaternion group nor the semi-dihedral group. Next, we give the classification of finite groups G if G/L ( G ) is a 2-group of maximal class.
引用
收藏
页码:651 / 660
页数:10
相关论文
共 16 条
[1]   AUTOMORPHISMS OF A P-GROUP [J].
ADNEY, JE ;
YEN, T .
ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (01) :137-&
[2]   Groups with abelian central quotient group [J].
Baer, Reinhold .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 44 (1-3) :357-386
[3]   On Finite NDC-Groups [J].
Bai, Pengfei ;
Guo, Xiuyun ;
Shum, K. P. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) :3099-3123
[4]  
Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V46, P1, DOI 10.1515/9783110208221
[5]   Finite groups with a given absolute central factor group [J].
Chaboksavar, M. ;
Ghouchan, M. Farrokhi Derakhshandeh ;
Saeedi, F. .
ARCHIV DER MATHEMATIK, 2014, 102 (05) :401-409
[6]   On the Norm and Wielandt Series in Finite Groups [J].
Guo, Xiuyun ;
Zhang, Xiaohong .
ALGEBRA COLLOQUIUM, 2012, 19 (03) :411-426
[7]  
Hall M., 1964, The Groups of Order, V2n
[8]   THE ABSOLUTE CENTER OF A GROUP [J].
HEGARTY, P .
JOURNAL OF ALGEBRA, 1994, 169 (03) :929-935
[9]   Autocommutator subgroups of finite groups [J].
Hegarty, PV .
JOURNAL OF ALGEBRA, 1997, 190 (02) :556-562
[10]  
HUPPERT B., 1967, GRUND MATH WISS, V134