Solitons on Kenmotsu manifolds

被引:0
作者
Shukla, Sushil [1 ]
Ojha, Ayush [1 ]
机构
[1] VBS Purvanchal Univ, Fac Engn & Technol, Dept Math, Jaunpur 222003, Uttar Pradesh, India
关键词
Connection; Manifold; Solitons; 3-MANIFOLDS; RESPECT;
D O I
10.47974/JIM-1948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article properties of solitons on Kenmotsu manifolds with Da-homothetic deformation and Schouten-van Kampen connection are discussed.
引用
收藏
页码:1175 / 1183
页数:9
相关论文
共 22 条
  • [1] On conformal solutions of the Yamabe flow
    Barbosa, Ezequiel
    Ribeiro, Ernani, Jr.
    [J]. ARCHIV DER MATHEMATIK, 2013, 101 (01) : 79 - 89
  • [2] Blair D. E., 1976, Lecture Notes in Math., V509
  • [3] Cao HD, 2012, MATH RES LETT, V19, P767
  • [4] Yamabe and Quasi-Yamabe Solitons on Euclidean Submanifolds
    Chen, Bang-Yen
    Deshmukh, Sharief
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (05)
  • [5] RICCI SOLITONS AND REAL HYPERSURFACES IN A COMPLEX SPACE FORM
    Cho, Jong Taek
    Kimura, Makoto
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2009, 61 (02) : 205 - 212
  • [6] Ghose G., 2020, Mathematical Science and Applications E-Notes, P165
  • [7] Hamilton R.S., 1988, contemp. Math., V71, P273
  • [8] Janssens D, 1981, KODAI MATH J, V4, P1
  • [9] Kenmotsu K., 1972, TOHOKU MATH J, V24, P93
  • [10] A Note on (Anti-)Self Dual Quasi Yamabe Gradient Solitons
    Neto, Benedito Leandro
    [J]. RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 527 - 533