Gl-QFOM and Gl-QGMRES: Two Efficient Algorithms for Quaternion Linear Systems With Multiple Right-Hand Sides

被引:3
作者
Li, Tao [1 ]
Wang, Qing-Wen [2 ,3 ,4 ]
Zhang, Xin-Fang [1 ]
机构
[1] Hainan Univ, Sch Math & Stat, Haikou, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[3] Shanghai Univ, Newtouch Ctr Math, Shanghai, Peoples R China
[4] Shanghai Univ, Collaborat Innovat Ctr Marine Artificial Intellige, Shanghai, Peoples R China
基金
中国国家自然科学基金; 芬兰科学院; 海南省自然科学基金;
关键词
global quaternion Arnoldi procedure; global quaternion FOM method; global quaternion GMRES method; multiple right-hand sides; quaternion linear systems; CONVERGENCE PROPERTIES; MATRIX; APPROXIMATION; EQUATION; GMRES;
D O I
10.1002/nla.70008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose the global quaternion full orthogonalization (Gl-QFOM) and global quaternion generalized minimum residual (Gl-QGMRES) methods, which are built upon global orthogonal and oblique projections onto a quaternion matrix Krylov subspace for solving quaternion linear systems with multiple right-hand sides. We first develop the global quaternion Arnoldi procedure to preserve the quaternion Hessenberg form during the iterations. We then establish the convergence analysis of the proposed methods and show how to apply them to solve the Sylvester quaternion matrix equation. Numerical examples are provided to illustrate the effectiveness of our methods compared with the traditional Gl-FOM and Gl-GMRES iterations for the real representations of the original linear systems.
引用
收藏
页数:15
相关论文
共 39 条
[1]   Sylvester Tikhonov-regularization methods in image restoration [J].
Bouhamidi, A. ;
Jbilou, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) :86-98
[2]   Conditional gradient Tikhonov method for a convex optimization problem in image restoration [J].
Bouhamidi, A. ;
Enkhbat, R. ;
Jbilou, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :580-592
[3]   A note on the numerical approximate solutions for generalized Sylvester matrix equations with applications [J].
Bouhamidi, A. ;
Jbilou, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) :687-694
[4]   Convergence properties of some block Krylov subspace methods for multiple linear systems [J].
Bouyouli, R. ;
Jbilou, K. ;
Sadaka, R. ;
Sadok, H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) :498-511
[5]   An Augmented Lagrangian Method for Total Variation Video Restoration [J].
Chan, Stanley H. ;
Khoshabeh, Ramsin ;
Gibson, Kristofor B. ;
Gill, Philip E. ;
Nguyen, Truong Q. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (11) :3097-3111
[6]   Quaternion Matrix Factorization for Low-Rank Quaternion Matrix Completion [J].
Chen, Jiang-Feng ;
Wang, Qing-Wen ;
Song, Guang-Jing ;
Li, Tao .
MATHEMATICS, 2023, 11 (09)
[7]  
Chen X., 2019, Quaternion Generalized Minimal Residual Method With Applications to Image Processing,
[8]   AN ALTERNATING RANK-k NONNEGATIVE LEAST SQUARES FRAMEWORK (ARkNLS) FOR NONNEGATIVE MATRIX FACTORIZATION [J].
Chu, Delin ;
Shi, Weya ;
Eswar, Srinivas ;
Park, Haesun .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (04) :1451-1479
[9]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[10]   A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides [J].
Freund, RW ;
Malhotra, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 254 :119-157