A Universal Bonding Strategy for Achieving CMOS-Compatible Silicon Heterogeneous Integration

被引:0
作者
Du, Yu [1 ,2 ]
Jiang, Heng [2 ]
Zhu, Bingxuan [3 ]
Yan, Han [1 ]
Chai, Yao [2 ]
Tsoi, Chi Chung [2 ]
Zhang, Xuming [2 ]
Wang, Chenxi [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Precis Welding & Joining Mat & Struc, Harbin 150001, Peoples R China
[2] Hong Kong Polytech Univ, Photon Res Inst, Dept Appl Phys, Hong Kong 999077, Peoples R China
[3] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Sauvage Lab Smart Mat, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
CMOS technology; heterogeneous integration; lithium niobate; photonic integrated circuits; silicon; VAN-DER-WAALS; LITHIUM-NIOBATE; THIN-FILM; WAFER; SURFACE; TEMPERATURE; TECHNOLOGY; ENERGY; SI;
D O I
10.1002/admt.202402063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon heterogeneous integration stands as a pivotal technology that underpins advancements in photonic integrated circuits and micro-electromechanical systems. In contrast to epitaxial growth, wafer bonding has gained significant attention for heterogeneous integration, as it overcomes limitations associated with lattice constants and film thickness. However, current silicon (Si) bonding methods face challenges when integrating materials such as lithium niobate (LiNbO3), silicon carbide, and fluoride glass, resulting in low interfacial strength and high thermal stress. In this work, a universal bonding strategy is presented that facilitates the formation of robust Si heterostructures, achieving a bonding strength of 4.2 MPa at 110 degrees C, which is significantly lower than the temperatures required for complementary metal-oxide-semiconductor (CMOS). This approach utilizes ultrathin amorphous silicon (a-Si) bonding interlayer deposited via COMS-compatible sputtering, enabling the transformation of higher-density chemically active non-stoichiometric silicon oxide (SiOx, 2 > x > 1) following surface activation, thereby demonstrating superior low-temperature bonding ability while preserving the structural advantages of direct bonding. Additionally, interfacial thermal stress and deformation are mitigated through finite element simulations to optimize structural mechanics. This versatile bonding strategy has been successfully demonstrated on several traditionally challenging-to-bond materials, providing a solid foundation for the development of next-generation Si-based devices.
引用
收藏
页数:10
相关论文
共 62 条
[1]  
Backlund I., 1992, J MICROMECH MICROENG, V2, P158
[2]   Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations [J].
Bai, Xiaoyuan ;
Shuai, Yao ;
Gong, Chaoguan ;
Wu, Chuangui ;
Luo, Wenbo ;
Boettger, Roman ;
Zhou, Shengqiang ;
Zhang, Wanli .
APPLIED SURFACE SCIENCE, 2018, 434 :669-673
[3]   Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core [J].
Bodrov, S. B. ;
Stepanov, A. N. ;
Bakunov, M. I. ;
Shishkin, B. V. ;
Ilyakov, I. E. ;
Akhmedzhanov, R. A. .
OPTICS EXPRESS, 2009, 17 (03) :1871-1879
[4]   Water Adsorption on Hydrophilic and Hydrophobic Surfaces of Silicon [J].
Chen, Lei ;
He, Xin ;
Liu, Hongshen ;
Qian, Linmao ;
Kim, Seong H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (21) :11385-11391
[5]   Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings [J].
Chen, Li ;
Reano, Ronald M. .
OPTICS EXPRESS, 2012, 20 (04) :4032-4038
[6]   Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing [J].
Chen, Yu ;
Lin, Hongtao ;
Hu, Juejun ;
Li, Mo .
ACS NANO, 2014, 8 (07) :6955-6961
[7]   Highly coupled and low frequency vibrational energy harvester using lithium niobate on silicon [J].
Clementi, Giacomo ;
Ouhabaz, Merieme ;
Margueron, Samuel ;
Suarez, Miguel Angel ;
Bassignot, Florent ;
Gauthier-Manuel, Ludovic ;
Belharet, Djaffar ;
Dulmet, Bernard ;
Bartasyte, Ausrine .
APPLIED PHYSICS LETTERS, 2021, 119 (01)
[8]   Silicon-On-Silicon Carbide Platform for Integrated Photonics [J].
Devault, Clayton T. ;
Deckoff-Jones, Skylar ;
Liu, Yuzi ;
Hammock, Ian N. ;
Sullivan, Sean E. ;
Dibos, Alan ;
Sorce, Peter ;
Orcutt, Jason ;
Awschalom, David D. ;
Heremans, F. Joseph ;
Falk, Abram ;
High, Alexander A. .
ADVANCED OPTICAL MATERIALS, 2024, 12 (27)
[9]   Silver diffusion bonding and layer transfer of lithium niobate to silicon [J].
Diest, Kenneth ;
Archer, Melissa J. ;
Dionne, Jennifer A. ;
Park, Young-Bae ;
Czubakowski, Matthew J. ;
Atwater, Harry A. .
APPLIED PHYSICS LETTERS, 2008, 93 (09)
[10]  
Dragoi V., 2006, ECS Transactions, V3, P147, DOI DOI 10.1149/1.2357064