Meteorological Data Based Detection of Stroke Using Machine Learning Techniques

被引:0
作者
Marc, Anastasia-Daria [1 ]
Ploscar, Andreea Alina [1 ]
Coroiu, Adriana Mihaela [1 ]
机构
[1] Babes Bolyai Univ, Cluj Napoca, Romania
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VIII | 2024年 / 15023卷
关键词
Stroke; Machine Learning; Classification; Subarachnoid Hemorrhage; Weather; Air Front;
D O I
10.1007/978-3-031-72353-7_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using meteorological data, this study compares Machine Learning approaches such as K-Nearest Neighbors, Support Vector Machine, and Artificial Neural Networks for detecting days with a greater probability of stroke incidence in the region of Transylvania, Romania. Being the first to address this problem in Romania, the study contributes to previous research by employing Machine Learning approaches and applying them to meteorological data that also includes air fronts. Furthermore, the study was conducted on data which was collected in a ten-year span (2013-2022). Because the initial dataset had a substantial class imbalance, having the positive class represent 1/20 of the whole dataset, the proposed approaches include dimensionality reduction and clustering techniques. According to the obtained results, the best-performing model is the Support Vector Machine, having an accuracy of 63%, a precision of 70%, and a recall of 63%.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 13 条
[1]  
[Anonymous], ABOUT US
[2]   The association between weather conditions and stroke admissions in Turkey [J].
Cevik, Yunsur ;
Dogan, Nurettin Ozgur ;
Das, Murat ;
Ahmedali, Asliddin ;
Kul, Seval ;
Bayram, Hasan .
INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2015, 59 (07) :899-905
[3]  
Devroye L., 1996, Probabilistic Theory Pattern Recog., P169
[4]   Are Stroke Occurrence and Outcome Related to Weather Parameters? Results from a Population-Based Study in Northern Portugal [J].
Magalhaes, Rui ;
Silva, M. Carolina ;
Correia, Manuel ;
Bailey, Trevor .
CEREBROVASCULAR DISEASES, 2011, 32 (06) :542-551
[5]   Associations among cardiovascular and cerebrovascular diseases: Analysis of the nationwide claims-based JROAD-DPC dataset [J].
Nakai, Michikazu ;
Iwanaga, Yoshitaka ;
Sumita, Yoko ;
Wada, Shinichi ;
Hiramatsu, Haruhiko ;
Iihara, Koji ;
Kohro, Takahide ;
Komuro, Issei ;
Kuroda, Tomohiro ;
Matoba, Tetsuya ;
Nakayama, Masaharu ;
Nishimura, Kunihiro ;
Noguchi, Teruo ;
Takemura, Tadamasa ;
Tominaga, Teiji ;
Toyoda, Kazunori ;
Tsujita, Kenichi ;
Yasuda, Satoshi ;
Miyamoto, Yoshihiro ;
Ogawa, Hisao .
PLOS ONE, 2022, 17 (03)
[6]   Machine learning model for predicting out-of-hospital cardiac arrests using meteorological and chronological data [J].
Nakashima, Takahiro ;
Ogata, Soshiro ;
Noguchi, Teruo ;
Tahara, Yoshio ;
Onozuka, Daisuke ;
Kato, Satoshi ;
Yamagata, Yoshiki ;
Kojima, Sunao ;
Iwami, Taku ;
Sakamoto, Tetsuya ;
Nagao, Ken ;
Nonogi, Hiroshi ;
Yasuda, Satoshi ;
Iihara, Koji ;
Neumar, Robert ;
Nishimura, Kunihiro .
HEART, 2021, 107 (13) :1084-1091
[7]  
Nakashima T, 2019, CIRCULATION, V140
[8]   Projected Global Trends in Ischemic Stroke Incidence, Deaths and Disability-Adjusted Life Years From 2020 to 2030 [J].
Pu, Liyuan ;
Wang, Li ;
Zhang, Ruijie ;
Zhao, Tian ;
Jiang, Yannan ;
Han, Liyuan .
STROKE, 2023, 54 (05) :1330-1339
[9]   Prognostication of Incidence and Severity of Ischemic Stroke in Hot Dry Climate From Environmental and Non-Environmental Predictors [J].
Statsenko, Yauhen ;
Habuza, Tetiana ;
Fursa, Ekaterina ;
Ponomareva, Anna ;
Almansoori, Taleb M. ;
Al Zahmi, Fatmah ;
Gorkom, Klaus Neidl-Van ;
Laver, Vasyl ;
Talako, Tatsiana ;
Szolics, Miklos ;
Dehdashtian, Alireza ;
Al Koteesh, Jamal ;
Ljubisavljevic, Milos .
IEEE ACCESS, 2022, 10 :58268-58286
[10]  
Suthaharan S, 2016, INTEGR SER INFORM SY, V36, P207