EHTracker: Toward Fine-Grained Localization for Satellite Video Target Tracking

被引:0
|
作者
Yang, Jianwei [1 ,2 ,3 ,4 ]
Liu, Yuhan [1 ,2 ,3 ,4 ]
Liu, Yanxing [1 ,2 ,3 ,4 ]
Wang, Ziming [1 ,2 ,3 ,4 ]
Li, Jiawei [1 ,2 ,3 ,4 ]
Zhou, Guangyao [1 ,2 ,3 ,4 ]
Wang, Wenzhi [1 ,2 ,3 ,4 ]
Hu, Yuxin [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Applica, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Key Lab Target Cognit & Applicat Technol TCAT, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 101408, Peoples R China
关键词
Target tracking; Satellites; Interference; Head; Location awareness; Filters; Feature extraction; Deep learning; Correlation; Accuracy; Graph attention; satellite video tracking; siamese network; tiny object; OBJECT TRACKING;
D O I
10.1109/JSTARS.2024.3520997
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning (DL)-based methods have shown great potential in the satellite video target tracking community. Nevertheless, most of the methods are still plagued by poor localization capabilities and background interference problems. In this article, we propose EHTracker, a Siamese-based tracker based on enhanced head network, specifically for tiny targets in satellite videos. EHTracker enhances the localization capability for tiny objects through the proposed enhanced head network, while the proposed background suppression module (BSM) improves the network's ability to suppress background interference. Specifically, to alleviate the problem of overlapping between the foreground and background in the classification branch, we propose a multihead graph attention refinement module (MGARM). Second, to enable the regression branch to determine the location of feature-poor small targets more accurately, we introduce a gradual regression strategy (GRS). MGARM and GRS together constitute the enhanced head network component of EHTracker. Further, in order to work with the enhanced head network to achieve classification and localization of small targets that lack distinctive features, we design a BSM. Extensive experiments are implemented on the SatSOT dataset and SV248S dataset, and the experimental results show that our method achieves state-of-the-art tracking performance.
引用
收藏
页码:5582 / 5599
页数:18
相关论文
共 50 条
  • [1] SVSDet: A Fine-Grained Recognition Method for Ship Target Using Satellite Video
    Liu, Shanwei
    Bu, Xi
    Xu, Mingming
    Sheng, Hui
    Zeng, Zhe
    Yasir, Muhammad
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4726 - 4742
  • [2] Fine-Grained Object Detection of Satellite Video in the Frequency Domain
    Sun, Yuhan
    Li, Shengyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [3] FineAction: A Fine-Grained Video Dataset for Temporal Action Localization
    Liu, Yi
    Wang, Limin
    Wang, Yali
    Ma, Xiao
    Qiao, Yu
    IEEE Transactions on Image Processing, 2022, 31 : 6937 - 6950
  • [4] FineAction: A Fine-Grained Video Dataset for Temporal Action Localization
    Liu, Yi
    Wang, Limin
    Wang, Yali
    Ma, Xiao
    Qiao, Yu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6937 - 6950
  • [5] One More Tag Enables Fine-Grained RFID Localization and Tracking
    Xiao, Fu
    Wang, Zhongqin
    Ye, Ning
    Wang, Ruchuan
    Li, Xiang-Yang
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2018, 26 (01) : 161 - 174
  • [6] Fine-Grained Scalable Video Caching
    Gong, Qiushi
    Woods, John W.
    Kar, Koushik
    Chakareski, Jacob
    2015 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2015, : 101 - 106
  • [7] Fine-grained Audible Video Description
    Shen, Xuyang
    Li, Dong
    Zhou, Jinxing
    Qin, Zhen
    He, Bowen
    Han, Xiaodong
    Li, Aixuan
    Dai, Yuchao
    Kong, Lingpeng
    Wang, Meng
    Qiao, Yu
    Zhong, Yiran
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10585 - 10596
  • [8] FILA: Fine-grained Indoor Localization
    Wu, Kaishun
    Xiao, Jiang
    Yi, Youwen
    Gao, Min
    Ni, Lionel M.
    2012 PROCEEDINGS IEEE INFOCOM, 2012, : 2210 - 2218
  • [9] Toward Fine-Grained Traffic Classification
    Park, Byungchul
    Hong, James Won-Ki
    Won, Young J.
    IEEE COMMUNICATIONS MAGAZINE, 2011, 49 (07) : 104 - 111
  • [10] FINE-GRAINED POSE TEMPORAL MEMORY MODULE FOR VIDEO POSE ESTIMATION AND TRACKING
    Wang, Chaoyi
    Hua, Yang
    Song, Tao
    Xue, Zhengui
    Ma, Ruhui
    Robertson, Neil
    Guan, Haibing
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2205 - 2209