PRICE ESTIMATION VIA BAYESIAN FILTERING AND OPTIMAL BID-ASK PRICES FOR MARKET MAKERS

被引:0
|
作者
Park, Hyungbin [1 ,2 ]
Park, Junsu [3 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[3] Optiver, Strawinskylaan 3051, NL-1077 ZX Amsterdam, Netherlands
基金
新加坡国家研究基金会;
关键词
Key words and phrases. Bayesian filter; particle filter; market making; VOLATILITY; RISK;
D O I
10.4134/JKMS.j230053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This study estimates the true price of an asset and finds the optimal bid/ask prices for market makers. We provide a novel state-space model based on the exponential Ornstein-Uhlenbeck volatility and the Heston models with Gaussian noise, where the traded price and volume are available, but the true price is not observable. An objective of this study is to use Bayesian filtering to estimate the posterior distribution of the true price, given the traded price and volume. Because the posterior density is intractable, we employ the guided particle filtering algorithm, with which adaptive rejection metropolis sampling is used to generate samples from the density function of an unknown distribution. Given a simulated sample path, the posterior expectation of the true price outperforms the traded price in estimating the true price in terms of both the mean absolute error and root-mean-square error metrics. Another objective is to determine the optimal bid/ask prices for a market maker. The profit-and-loss of the market maker is the difference between the true price and its bid/ask prices multiplied by the traded volume or bid/ask size of the market maker. The market maker maximizes the expected utility of the PnL under the posterior distribution. We numerically calculate the optimal bid/ask prices using the Monte Carlo method, finding that its spread widens as the market maker becomes more risk-averse, and the bid/ask size and the level of uncertainty increase.
引用
收藏
页码:875 / 898
页数:24
相关论文
共 50 条