Dynamics of phase tumbling and the reentrainment of circadian oscillators

被引:0
作者
Liao, Guangyuan [1 ]
Diekman, Casey O. [2 ]
Bose, Amitabha [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Key Lab Intelligent Anal & Decis Complex Syst, Chongwen Rd, Chongqing 400065, Peoples R China
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Circadian rhythms; Entrainment; Phase tumbling; Iterated map; JET-LAG; CLOCK; ENTRAINMENT; AMPLITUDE; RHYTHMS; MODEL; SINGULARITY; SYNCHRONY; PACEMAKER; BEHAVIOR;
D O I
10.1016/j.mbs.2025.109381
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Circadian clocks are comprised of networks of cellular oscillators that synchronize to produce endogenous daily rhythms in gene expression and protein abundance. These clocks have evolved to align the physiology and behavior of organisms to the 24-h environmental cycles arising from Earth's rotation. Rapid travel across time zones causes misalignment between an organism's circadian rhythms and its environment, leading to sleep problems and other jet lag symptoms until the circadian system entrains to the external cycles of the new time zone. Experimental and modeling work has shown that phase tumbling, defined as desynchronizing networks of circadian oscillators prior to an abrupt phase shift of the light-dark cycle, can speedup the process of reentrainment. Here, we use a mathematical model of circadian oscillators and 2-D entrainment maps to analyze the conditions under which phase tumbling has a positive, neutral, or negative effect on reentrainment time. We find that whether or not phase tumbling is beneficial depends on the size of the external phase shift and the location of the perturbed oscillator with respect to the fixed points and invariant manifolds of the entrainment map.
引用
收藏
页数:14
相关论文
共 47 条
  • [1] Roenneberg T., Merrow M., The circadian clock and human health, Curr. Biol., 26, 10, pp. R432-R443, (2016)
  • [2] Vosko A.M., Colwell C.S., Avidan A.Y., Jet lag syndrome: circadian organization, pathophysiology, and management strategies, Nat. Sci. Sleep, pp. 187-198, (2010)
  • [3] An S., Harang R., Meeker K., Granados-Fuentes D., Tsai C.A., Mazuski C., Kim J., Doyle III F.J., Petzold L.R., Herzog E.D., A neuropeptide speeds circadian entrainment by reducing intercellular synchrony, Proc. Natl. Acad. Sci., 110, 46, pp. E4355-E4361, (2013)
  • [4] Mazuski C., Herzog E.D., Circadian rhythms: To sync or not to sync, Curr. Biol., 25, 8, pp. R337-R339, (2015)
  • [5] Roberts L., Leise T.L., Noguchi T., Galschiodt A.M., Houl J.H., Welsh D.K., Holmes T.C., Light evokes rapid circadian network oscillator desynchrony followed by gradual phase retuning of synchrony, Curr. Biol., 25, pp. 858-867, (2015)
  • [6] Roberts L., Leise T.L., Welsh D.K., Holmes T.C., Functional contributions of strong and weak cellular oscillators to synchrony and light-shifted phase dynamics, J. Biol. Rhythms, 31, 4, pp. 337-351, (2016)
  • [7] Golombek D.A., Rosenstein R.E., Physiology of circadian entrainment, Physiol. Rev., 90, 3, pp. 1063-1102, (2010)
  • [8] Vosko A.M., Schroeder A., Loh D.H., Colwell C.S., Vasoactive intestinal peptide and the mammalian circadian system, Gen. Comp. Endocrinol., 152, 2-3, pp. 165-175, (2007)
  • [9] Abraham U., Granada A.E., Westermark P.O., Heine M., Kramer A., Herzel H., Coupling governs entrainment range of circadian clocks, Mol. Syst. Biol., 6, (2010)
  • [10] Buhr E., Yoo S., Takahashi J., Temperature as a universal resetting cue for mammalian circadian oscillators, Science, 330, 6002, pp. 379-385, (2010)