A Real-time Explainable-by-design Super-Resolution Model for LiDAR SLAM

被引:0
作者
Gkillas, Alexandros [1 ,2 ]
Anagnostopoulos, Christos [2 ]
Piperigkos, Niko S. [1 ,2 ]
Lalos, Aris S. [1 ]
机构
[1] Athena Res Ctr, Ind Syst Inst, Patras Sci Pk, Patras, Greece
[2] AviSenseAI, Patras Sci Pk, Patras, Greece
来源
2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024 | 2024年
基金
欧盟地平线“2020”;
关键词
lidar super-resolution; SLAM; deep unrolling; explainability; real-time;
D O I
10.1109/ICPS59941.2024.10640037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Addressing the prohibitive cost of high-resolution LiDAR sensors, this study introduces a novel LiDAR Super-Resolution method. In a more detailed manner, we will emphasize on three key factors for deploying Super-Resolution algorithms in real-world scenarios: enhanced accuracy, reduced computational complexity, and real-time performance. To this end, a novel optimization problem is proposed to solve the LiDAR Super-Resolution problem. By combining learnable regularizers that utilize the low-rank properties of the LiDAR data and handcrafted regularizers that capture the ring-like structure, an explainable and computationally efficient deep learning architecture is derived using the Deep Unrolling strategy. Extensive numerical results on a real-world autonomous driving dataset demonstrate our model's superiority over existing state-of-the-art methods, especially in practical SLAM applications. Notably, our solution operates at 50-100 fps, significantly improving realtime performance, a key advantage over current methods that do not meet this critical requirement.
引用
收藏
页数:8
相关论文
共 23 条
[1]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[2]  
Dosovitskiy A, 2017, PR MACH LEARN RES, V78
[3]   RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection [J].
Fan, Lue ;
Xiong, Xuan ;
Wang, Feng ;
Wang, Naiyan ;
Zhang, Zhaoxiang .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :2898-2907
[4]   NONLINEAR IMAGE RECOVERY WITH HALF-QUADRATIC REGULARIZATION [J].
GEMAN, D ;
YANG, CD .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1995, 4 (07) :932-946
[5]  
Gkillas A., 2023, IEEE Transactions on Intelligent Vehicles, P1
[6]   AN EFFICIENT DEEP UNROLLING SUPER-RESOLUTION NETWORK FOR LIDAR AUTOMOTIVE SCENES [J].
Gkillas, Alexandros ;
Lalos, Aris S. ;
Ampeliotis, Dimitris .
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, :1840-1844
[7]   Implicit LiDAR Network: LiDAR Super-Resolution via Interpolation Weight Prediction [J].
Kwon, Youngsun ;
Sung, Minhyuk ;
Yoon, Sung-Eui .
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, :8424-8430
[8]   Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [J].
Ledig, Christian ;
Theis, Lucas ;
Huszar, Ferenc ;
Caballero, Jose ;
Cunningham, Andrew ;
Acosta, Alejandro ;
Aitken, Andrew ;
Tejani, Alykhan ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :105-114
[9]   Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems [J].
Li, You ;
Ibanez-Guzman, Javier .
IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (04) :50-61
[10]   Deep Unrolled Low-Rank Tensor Completion for High Dynamic Range Imaging [J].
Mai, Truong Thanh Nhat ;
Lam, Edmund Y. ;
Lee, Chul .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :5774-5787