AI and Smart Devices in Cardio-Oncology: Advancements in Cardiotoxicity Prediction and Cardiovascular Monitoring

被引:3
作者
Nechita, Luiza Camelia [1 ]
Tutunaru, Dana [1 ]
Nechita, Aurel [1 ]
Voipan, Andreea Elena [2 ]
Voipan, Daniel [2 ]
Tupu, Ancuta Elena [1 ]
Musat, Carmina Liana [1 ]
机构
[1] Dunarea Jos Univ Galati, Fac Med & Pharm, Galati 800008, Romania
[2] Dunarea Jos Univ Galati, Fac Automat Comp Elect Engn & Elect, Galati 800008, Romania
关键词
artificial intelligence; cardio-oncology; cardiotoxicity; machine learning; deep learning; wearable devices; implantable devices; real-time monitoring; cardiovascular risk; CANCER-THERAPY; WEARABLE DEVICES; COMPLICATIONS; MANAGEMENT; DIAGNOSIS; DISEASE; HEART; RISK; PREVENTION; CARE;
D O I
10.3390/diagnostics15060787
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The increasing prevalence of cardiovascular complications in cancer patients due to cardiotoxic treatments has necessitated advanced monitoring and predictive solutions. Cardio-oncology is an evolving interdisciplinary field that addresses these challenges by integrating artificial intelligence (AI) and smart cardiac devices. This comprehensive review explores the integration of artificial intelligence (AI) and smart cardiac devices in cardio-oncology, highlighting their role in improving cardiovascular risk assessment and the early detection and real-time monitoring of cardiotoxicity. AI-driven techniques, including machine learning (ML) and deep learning (DL), enhance risk stratification, optimize treatment decisions, and support personalized care for oncology patients at cardiovascular risk. Wearable ECG patches, biosensors, and AI-integrated implantable devices enable continuous cardiac surveillance and predictive analytics. While these advancements offer significant potential, challenges such as data standardization, regulatory approvals, and equitable access must be addressed. Further research, clinical validation, and multidisciplinary collaboration are essential to fully integrate AI-driven solutions into cardio-oncology practices and improve patient outcomes.
引用
收藏
页数:27
相关论文
共 103 条
[1]   Paradigm shift from Artificial Neural Networks (ANNs) to deep Convolutional Neural Networks (DCNNs) in the field of medical image processing [J].
Abut, Serdar ;
Okut, Hayrettin ;
Kallail, K. James .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 244
[2]   Artificial intelligence modelling to assess the risk of cardiovascular disease in oncology patients [J].
Al-Droubi, Samer S. ;
Jahangir, Eiman ;
Kochendorfer, Karl M. ;
Krive, Marianna ;
Laufer-Perl, Michal ;
Gilon, Dan ;
Okwuosa, Tochukwu M. ;
Gans, Christopher P. ;
Arnold, Joshua H. ;
Bhaskar, Shakthi T. ;
Yasin, Hesham A. ;
Krive, Jacob .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (04) :302-315
[3]   The Role of Natural Language Processing during the COVID-19 Pandemic: Health Applications, Opportunities, and Challenges [J].
Al-Garadi, Mohammed Ali ;
Yang, Yuan-Chi ;
Sarker, Abeed .
HEALTHCARE, 2022, 10 (11)
[4]  
Aleman Berthe M P, 2014, EJC Suppl, V12, P18, DOI 10.1016/j.ejcsup.2014.03.002
[5]   Sleep Disorders Associated with Neurodegenerative Diseases [J].
Anghel, Lucretia ;
Ciubara, Anamaria ;
Nechita, Aurel ;
Nechita, Luiza ;
Manole, Corina ;
Baroiu, Liliana ;
Ciubara, Alexandru Bogdan ;
Musat, Carmina Liana .
DIAGNOSTICS, 2023, 13 (18)
[6]   How to use digital devices to detect and manage arrhythmias: an EHRA practical guide (vol 24, pg 979, 2022) [J].
Svennberg, Emma ;
Tjong, Fleur ;
Goette, Andreas ;
Akoum, Nazem ;
Di Biase, Luigi ;
Bordachar, Pierre ;
Boriani, Giuseppe ;
Burri, Haran ;
Conte, Giulio ;
Deharo, Jean Claude ;
Deneke, Thomas ;
Drossart, Inga ;
Duncker, David ;
Han, Janet K. ;
Heidbuchel, Hein ;
Jais, Pierre ;
Figueiredo, Marcio Jansen de Oliveira ;
Linz, Dominik ;
Lip, Gregory Y. H. ;
Malaczynska-Rajpold, Katarzyna ;
Maruez, Manlio F. ;
Ploem, Corrette ;
Soejima, Kyoko ;
Stiles, Martin K. ;
Wierda, Eric ;
Vernooy, Kevin ;
Leclercq, Christophe ;
Meyer, Christian ;
Pisani, Cristiano ;
Pak, Hui Nam ;
Gupta, Dhiraj ;
Purerfellner, Helmut ;
Crijns, H. J. G. M. C. ;
Chavez, Edgar Antezana ;
Willems, Stephan ;
Waldmann, Victor ;
Dekker, Lukas ;
Wan, Elaine ;
Kavoor, Pramesh ;
Turagam, Mohit K. ;
Sinner, Moritz .
EUROPACE, 2023, 25 (02) :486-486
[7]  
Bajwa Junaid, 2021, Future Healthc J, V8, pe188, DOI 10.7861/fhj.2021-0095
[8]   Cardiovascular Care of the Oncology Patient During COVID-19: An Expert Consensus Document From the ACC Cardio-Oncology and Imaging Councils [J].
Baldassarre, Lauren A. ;
Yang, Eric H. ;
Cheng, Richard K. ;
DeCara, Jeanne M. ;
Dent, Susan ;
Liu, Jennifer E. ;
Rudski, Lawrence G. ;
Strom, Jordan B. ;
Thavendiranathan, Paaladinesh ;
Barac, Ana ;
Zaha, Vlad G. ;
Bucciarelli-Ducci, Chiara ;
Ellahham, Samer ;
Deswal, Anita ;
Lenneman, Carrie ;
Villarraga, Hector R. ;
Blaes, Anne H. ;
Ismail-Khan, Roohi ;
Ky, Bonnie ;
Leja, Monika J. ;
Scherrer-Crosbie, Marielle .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2021, 113 (05) :513-522
[9]   The Challenges of Machine Learning: A Critical Review [J].
Barbierato, Enrico ;
Gatti, Alice .
ELECTRONICS, 2024, 13 (02)
[10]   Smart wearable devices in cardiovascular care: where we are and how to move forward [J].
Bayoumy, Karim ;
Gaber, Mohammed ;
Elshafeey, Abdallah ;
Mhaimeed, Omar ;
Dineen, Elizabeth H. ;
Marvel, Francoise A. ;
Martin, Seth S. ;
Muse, Evan D. ;
Turakhia, Mintu P. ;
Tarakji, Khaldoun G. ;
Elshazly, Mohamed B. .
NATURE REVIEWS CARDIOLOGY, 2021, 18 (08) :581-599