Second order regularity for solutions to anisotropic degenerate elliptic equations

被引:1
作者
Baratta, Daniel [1 ]
Muglia, Luigi [1 ]
Vuono, Domenico [1 ]
机构
[1] UNICAL, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Arcavacata Di Rende, Cosenza, Italy
关键词
Anisotropic elliptic equations; Second-order estimates; Regularity; POSITIVE SOLUTIONS; ZYGMUND THEORY; GRADIENT; MONOTONICITY; BOUNDEDNESS;
D O I
10.1016/j.jde.2025.113250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider solutions to degenerate anisotropic elliptic equations in order to study their regularity. In particular we establish second-order estimates and enclose regularity results for the stress field. All our results are new even in the euclidean case. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:29
相关论文
共 42 条
[1]  
[Anonymous], 1975, Sobolev Spaces
[2]  
Antonini CA, 2023, Arxiv, DOI arXiv:2307.03052
[3]   Interior regularity results for inhomogeneous anisotropic quasilinear equations [J].
Antonini, Carlo Alberto ;
Ciraolo, Giulio ;
Farina, Alberto .
MATHEMATISCHE ANNALEN, 2023, 387 (3-4) :1745-1776
[4]   Nonlinear Caldern-Zygmund Theory in the Limiting Case [J].
Avelin, Benny ;
Kuusi, Tuomo ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 227 (02) :663-714
[5]   A pointwise differential inequality and second-order regularity for nonlinear elliptic systems [J].
Balci, Anna Kh. ;
Cianchi, Andrea ;
Diening, Lars ;
Maz'ya, Vladimir .
MATHEMATISCHE ANNALEN, 2022, 383 (3-4) :1775-1824
[6]   Higher order Calderon-Zygmund estimates for the p-Laplace equation [J].
Balci, Anna Kh ;
Diening, Lars ;
Weimar, Markus .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (02) :590-635
[7]  
Baratta D, 2024, Arxiv, DOI arXiv:2402.17566
[8]   Homogenization of Penrose tilings [J].
Braides, Andrea ;
Riey, Giuseppe ;
Solci, Margherita .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) :697-700
[9]   Hopf Lemma and regularity results for quasilinear anisotropic elliptic equations [J].
Castorina, Daniele ;
Riey, Giuseppe ;
Sciunzi, Berardino .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)
[10]   THE REGULARITY OF SOLUTIONS TO SOME VARIATIONAL PROBLEMS, INCLUDING THE p-LAPLACE EQUATION FOR 2 ≤ p < 3 [J].
Cellina, Arrigo .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (04) :1543-1553