Time-Varying Spatial Propagation of Brain Networks in fMRI Data

被引:0
作者
Bostami, Biozid [1 ,2 ]
Lewis, Noah [2 ,3 ]
Agcaoglu, Oktay [2 ]
Turner, Jessica A. [4 ]
van Erp, Theo [5 ]
Ford, Judith M. [6 ]
Fouladivanda, Mahshid [2 ]
Calhoun, Vince [1 ,2 ,7 ]
Iraji, Armin [2 ,7 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Tech & Emory, Georgia State, Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA USA
[4] Univ Calif Irvine, Dept Psychiat & Behav Hlth, Irvine, CA USA
[5] Univ Calif Irvine, Sch Med, Irvine, CA USA
[6] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA USA
[7] Georgia State, Dept Comp Sci, Atlanta, GA USA
基金
美国国家科学基金会;
关键词
dynamic states; network propagation; resting-state fMRI; sliding window; spatial dynamic propagation; INDEPENDENT COMPONENT ANALYSIS; FUNCTIONAL CONNECTIVITY; ICA; FLUCTUATIONS; DYNAMICS; SIGNAL; MRI;
D O I
10.1002/hbm.70131
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro-scale level as measured by resting-state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel-wise network-specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level-dependent (BOLD) signal for 6-8 s, whereas the visual network propagates much quicker. We also show that summaries of network-specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large-scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Quasi-periodic patterns of brain activity in individuals with attention-deficit/hyperactivity disorder [J].
Abbas, Anzar ;
Bassil, Yasmine ;
Keilholz, Shella .
NEUROIMAGE-CLINICAL, 2019, 21
[2]   Reproducibility and replicability in neuroimaging data analysis [J].
Adali, Tulay ;
Calhoun, Vince D. .
CURRENT OPINION IN NEUROLOGY, 2022, 35 (04) :475-481
[3]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[4]   A baseline for the multivariate comparison of resting-state networks [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Damaraju, Eswar ;
Gruner, William ;
Segall, Judith M. ;
Silva, Rogers F. ;
Havlicek, Martin ;
Rachakonda, Srinivas ;
Fries, Jill ;
Kalyanam, Ravi ;
Michael, Andrew M. ;
Caprihan, Arvind ;
Turner, Jessica A. ;
Eichele, Tom ;
Adelsheim, Steven ;
Bryan, Angela D. ;
Bustillo, Juan ;
Clark, Vincent P. ;
Ewing, Sarah W. Feldstein ;
Filbey, Francesca ;
Ford, Corey C. ;
Hutchison, Kent ;
Jung, Rex E. ;
Kiehl, Kent A. ;
Kodituwakku, Piyadasa ;
Komesu, Yuko M. ;
Mayer, Andrew R. ;
Pearlson, Godfrey D. ;
Phillips, John P. ;
Sadek, Joseph R. ;
Stevens, Michael ;
Teuscher, Ursina ;
Thoma, Robert J. ;
Calhoun, Vince D. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
[5]  
[Anonymous], SPM12
[6]  
[Anonymous], Gift Toolbox for ICA.
[7]  
[Anonymous], Human Coonectome Dataset.
[8]  
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
[9]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[10]   The organization of the human cerebellum estimated by intrinsic functional connectivity [J].
Buckner, Randy L. ;
Krienen, Fenna M. ;
Castellanos, Angela ;
Diaz, Julio C. ;
Yeo, B. T. Thomas .
JOURNAL OF NEUROPHYSIOLOGY, 2011, 106 (05) :2322-2345