A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma

被引:1
|
作者
Agosti, Edoardo [1 ]
Antonietti, Sara [1 ]
Ius, Tamara [2 ]
Fontanella, Marco Maria [1 ]
Zeppieri, Marco [3 ]
Panciani, Pier Paolo [1 ]
机构
[1] Univ Brescia, Div Neurosurg, Dept Med & Surg Specialties Radiol Sci & Publ Hlth, Piazza Spedali Civili 1, I-25123 Brescia, Italy
[2] Univ Hosp Udine, Head Neck & Neurosci Dept, Neurosurg Unit, p le S Maria Misericordia 15, I-33100 Udine, Italy
[3] Univ Hosp Udine, Dept Ophthalmol, p le S Maria Misericordia 15, I-33100 Udine, Italy
关键词
glioblastoma; molecular targets; mesenchymal stem cell; extracellular vesicle systematic reviews; GENE; GLIOMA; TEMOZOLOMIDE; SURVIVAL;
D O I
10.3390/brainsci14111058
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Glioblastoma (GBM) is an extremely aggressive brain tumor that has few available treatment options and a dismal prognosis. Recent research has highlighted the potential of extracellular vesicles (MSC-EVs) produced from mesenchymal stem cells as a potential treatment approach for GBM. MSC-EVs, including exosomes, microvesicles, and apoptotic bodies, perform a significant function in cellular communication and have shown promise in mediating anti-tumor effects. Purpose: This systematic literature review aims to consolidate current findings on the therapeutic potential of MSC-EVs in GBM treatment. Methods: A systematic search was conducted across major medical databases (PubMed, Web of Science, and Scopus) up to September 2024 to identify studies investigating the use of MSC-derived EVs in GBM therapy. Keywords included "extracellular vesicles", "mesenchymal stem cells", "targeted therapies", "outcomes", "adverse events", "glioblastoma", and "exosomes". Inclusion criteria were studies published in English involving GBM models both in vivo and in vitro and those reporting on therapeutic outcomes of MSC-EVs. Data were extracted and analyzed based on EV characteristics, mechanisms of action, and therapeutic efficacy. Results: The review identified several key studies demonstrating the anti-tumor effects of MSC-EVs in GBM models. A total of three studies were included, focusing on studies conducted between 2021 and 2023. The review included three studies that collectively enrolled a total of 18 patients. These studies were distributed across two years, with two trials published in 2023 (66.7%) and one in 2021 (33.3%). The mean age of the participants ranged from 37 to 57 years. In terms of gender distribution, males were the predominant group in all studies. Prior to receiving MSC-EV therapy, all patients had undergone standard treatments for GBM, including surgery, chemotherapy (CT), and, in some cases, radiation therapy (RT). In all three studies, the targeted treatment involved the administration of herpes simplex virus thymidine kinase (HSVtk) gene therapy delivered to the tumor site, then 14 days of ganciclovir treatment. Outcomes across the studies indicated varying levels of efficacy for the MSC-EV-based therapy. The larger 2023 study reported fewer encouraging outcomes, with a median PFS of 11.0 months (95% CI: 8.3-13.7) and a median OS of 16.0 months (95% CI: 14.3-17.7). Adverse effects were reported in only one of the studies, the 2021 trial, where patients experienced mild-to-moderate side effects, including fever, headache, and cerebrospinal fluid leukocytosis. A total of 11 studies on preclinical trials, using in vitro and in vivo models, were included, covering publications from 2010 to 2024. The studies utilized MSCs as delivery systems for various therapeutic agents (interleukin 12, interleukin 7, doxorubicin, paclitaxel), reflecting the versatility of these cells in targeted cancer therapies. Conclusions: MSC-derived EVs represent a promising therapeutic approach for GBM, offering multiple mechanisms to inhibit tumor growth and enhance treatment efficacy. Their ability to deliver bioactive molecules and modulate the tumor microenvironment underscores their potential as a novel, cell-free therapeutic strategy. Future studies should optimize EV production and delivery methods and fully understand their long-term effects in clinical settings to harness their therapeutic potential in GBM treatment.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
    Katsuda, Takeshi
    Kosaka, Nobuyoshi
    Takeshita, Fumitaka
    Ochiya, Takahiro
    PROTEOMICS, 2013, 13 (10-11) : 1637 - 1653
  • [2] Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential
    Zhao, Ashley G.
    Shah, Kiran
    Cromer, Brett
    Sumer, Huseyin
    STEM CELLS INTERNATIONAL, 2020, 2020
  • [3] Regenerative Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles
    Thalakiriyawa, Dineshi Sewvandi
    Jayasooriya, Primali Rukmal
    Dissanayaka, Waruna Lakmal
    CURRENT MOLECULAR MEDICINE, 2022, 22 (02) : 98 - 119
  • [4] Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges
    Fuloria, Shivkanya
    Subramaniyan, Vetriselvan
    Dahiya, Rajiv
    Dahiya, Sunita
    Sudhakar, Kalvatala
    Kumari, Usha
    Sathasivam, Kathiresan
    Meenakshi, Dhanalekshmi Unnikrishnan
    Wu, Yuan Seng
    Sekar, Mahendran
    Malviya, Rishabha
    Singh, Amit
    Fuloria, Neeraj Kumar
    BIOLOGY-BASEL, 2021, 10 (03): : 1 - 31
  • [5] ! The Therapeutic Potential of Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles
    Boerger, V.
    Goergens, A.
    Rohde, E.
    Giebel, B.
    TRANSFUSIONSMEDIZIN, 2015, 5 (03) : 131 - 137
  • [6] Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
    Kyong-Su Park
    Elga Bandeira
    Ganesh V. Shelke
    Cecilia Lässer
    Jan Lötvall
    Stem Cell Research & Therapy, 10
  • [7] Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
    Park, Kyong-Su
    Bandeira, Elga
    Shelke, Ganesh V.
    Lasser, Cecilia
    Lotvall, Jan
    STEM CELL RESEARCH & THERAPY, 2019, 10 (01)
  • [8] Proteomic Analysis of Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Systematic Review
    Krishnan, Illayaraja
    Chan, Alvin Man Lung
    Law, Jia Xian
    Ng, Min Hwei
    Jayapalan, Jaime Jacqueline
    Lokanathan, Yogeswaran
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [9] Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Treatment of Bronchopulmonary Dysplasia
    Xi, Yufeng
    Ju, Rong
    Wang, Yujia
    FRONTIERS IN PEDIATRICS, 2022, 10
  • [10] Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles to Treat PCOS
    Park, Hang-Soo
    Cetin, Esra
    Siblini, Hiba
    Seok, Jin
    Alkelani, Hiba
    Alkhrait, Samar
    Liakath Ali, Farzana
    Ghasroldasht, Mohammad Mousaei
    Beckman, Analea
    Al-Hendy, Ayman
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (13)