A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials

被引:0
作者
Maeno, Toshiaki [1 ]
Naito, Satoshi [2 ]
Sagaki, Daisuke [3 ]
机构
[1] Meijo Univ, Fac Sci & Technol, Dept Math, 1-501 Shiogamaguchi,Tempaku Ku, Nagoya 4688502, Japan
[2] Inst Sci Tokyo, Dept Math, 2-12-1 Oh Okayama,Meguro Ku, Tokyo 1528551, Japan
[3] Univ Tsukuba, Inst Pure & Appl Sci, Dept Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, Japan
关键词
FORMULA;
D O I
10.1017/fms.2024.147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal. In this paper, we prove that quantum double Grothendieck polynomials, introduced by Lenart-Maeno, represent the corresponding (opposite) Schubert classes in the quantum K-theory ring $QK_{H}(Fl_{n+1})$ under this presentation. The main ingredient in our proof is an explicit formula expressing the semi-infinite Schubert class associated to the longest element of the finite Weyl group, which is proved by making use of the general Chevalley formula for the torus-equivariant K-group of the semi-infinite flag manifold associated to $SL_{n+1}(\mathbb {C})$ .
引用
收藏
页数:26
相关论文
共 41 条
[1]   On the Finiteness of Quantum K-Theory of a Homogeneous Space [J].
Anderson, David ;
Chen, Linda ;
Tseng, Hsian-Hua .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (02) :1313-1349
[2]  
Bjorner A., 2005, COMBINATORICS COXETE, V231
[3]   SEMI-INFINITE SCHUBERT VARIETIES AND QUANTUM K-THEORY OF FLAG MANIFOLDS [J].
Braverman, Alexander ;
Finkelberg, Michael .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (04) :1147-1168
[4]  
Brenti F, 1999, INT MATH RES NOTICES, V1999, P419
[5]   A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties [J].
Buch, Anders S. ;
Chaput, Pierre-Emmanuel ;
Mihalcea, Leonardo C. ;
Perrin, Nicolas .
ALGEBRAIC GEOMETRY, 2018, 5 (05) :568-595
[6]  
Eisenbud D., 1995, Graduate Texts in Mathematics, V150, DOI DOI 10.1007/978-1-4612-5350-1
[7]   A PIERI FORMULA IN THE GROTHENDIECK RING OF A FLAG BUNDLE [J].
FULTON, W ;
LASCOUX, A .
DUKE MATHEMATICAL JOURNAL, 1994, 76 (03) :711-729
[8]   Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups [J].
Givental, A ;
Lee, YP .
INVENTIONES MATHEMATICAE, 2003, 151 (01) :193-219
[9]   On the WDVV equation in quantum K-theory [J].
Givental, A .
MICHIGAN MATHEMATICAL JOURNAL, 2000, 48 :295-304
[10]  
Gu W, 2024, Arxiv, DOI arXiv:2208.01091