Effects of Patchiness on Soil Properties and Degradation of Alpine Meadow on the Qinghai-Tibetan Plateau

被引:0
|
作者
Zhang, Wei [1 ,2 ]
Yi, Shuhua [3 ]
Qin, Yu [4 ]
Zhang, Jinglin [1 ,5 ,6 ]
机构
[1] Chuzhou Univ, Sch Geog Informat & Tourism, 1 Huifeng West Rd, Chuzhou 239000, Peoples R China
[2] Chuzhou Univ, Anhui Prov Key Lab Phys Geog Environm, 1 Huifeng West Rd, Chuzhou 239000, Peoples R China
[3] Nantong Univ, Sch Geog Sci, Inst Fragile Ecosyst & Environm, 999 Tongjing Rd, Nantong 226007, Peoples R China
[4] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, 320 Donggang West Rd, Lanzhou 730000, Peoples R China
[5] Anhui Engn Res Ctr Remote Sensing & Geoinformat, 1 Huifeng West Rd, Chuzhou 239000, Peoples R China
[6] Anhui Ctr Collaborat Innovat Geog Informat Integra, 1 Huifeng West Rd, Chuzhou 239000, Peoples R China
基金
中国国家自然科学基金;
关键词
patchiness; alpine meadow degradation; isolated vegetation patch; soil water storage; soil temperature; evapotranspiration; GRASSLAND; TRENDS; FLOW; INFILTRATION; RESTORATION; ECOSYSTEM; PLANT;
D O I
10.3390/land13101556
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Patchiness is known to affect soil water and soil temperature, and may trigger or accelerate alpine meadow degradation. However, there is a lack of direct evidence concerning the role of the size and type of patches on soil conditions. Here, we estimated the effects of typical patch types on the critical factors of soil water and soil temperature through an in situ survey and then analyzed the potential impacts of patchiness on alpine meadow degradation. The results showed that (1) the soil water storage (SWS) of typical patch types was remarkably different, and vegetation patches had higher SWS than bare patches; (2) with abundant precipitation, the isolated vegetation patch (IV) had higher SWS than the original vegetation patch (OV), accompanied by a decrease in the SWS of the surrounding medium bare patch (MP); (3) patchiness significantly altered the surface soil temperature, with the IV having the highest soil temperature (ST), followed by the OV and bare patches; and (4) the maximum mean value of evapotranspiration was observed in IV (3.85 mm/day), about 12.78% and 46.66% higher than in the bare patches and OV. Our findings indicated that patchiness intensified the heterogeneity of soil water and soil temperature. The IV could absorb soil water from surrounding MP for excessive evapotranspiration through constant high ST, potentially inducing or aggravating degradation. Increasing the connectivity of IV and preventing the transition of OV to IV is important for the stability and restoration of alpine meadow.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Effects of Patchiness on Surface Soil Moisture of Alpine Meadow on the Northeastern Qinghai-Tibetan Plateau: Implications for Grassland Restoration
    Zhang, Wei
    Yi, Shuhua
    Qin, Yu
    Sun, Yi
    Shangguan, Donghui
    Meng, Baoping
    Li, Meng
    Zhang, Jianguo
    REMOTE SENSING, 2020, 12 (24) : 1 - 15
  • [2] The response of soil macroinvertebrates to alpine meadow degradation in the Qinghai-Tibetan Plateau, China
    Wu, Pengfei
    Zhang, Hongzhi
    Wang, Yong
    APPLIED SOIL ECOLOGY, 2015, 90 : 60 - 67
  • [3] Effects of Grassland Tourism on Alpine Meadow Community and Soil Properties in the Qinghai-Tibetan Plateau
    Feng, Ling
    Gan, Mianyu
    Tian, Fu-Ping
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2019, 28 (06): : 4147 - 4152
  • [4] Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China
    Xu, ManHou
    Peng, Fei
    You, QuanGang
    Guo, Jian
    Tian, XiaFei
    Liu, Min
    Xue, Xian
    JOURNAL OF ARID LAND, 2015, 7 (02) : 189 - 204
  • [5] Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau
    Li, Guoyong
    Mu, Junpeng
    Liu, Yinzhan
    Smith, Nicholas G.
    Sun, Shucun
    PLANT AND SOIL, 2017, 421 (1-2) : 147 - 155
  • [6] Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau
    Guoyong Li
    Junpeng Mu
    Yinzhan Liu
    Nicholas G. Smith
    Shucun Sun
    Plant and Soil, 2017, 421 : 147 - 155
  • [7] Alpine meadow degradation enhances the temperature sensitivity of soil carbon decomposition on the Qinghai-Tibetan plateau
    Pei, Junmin
    Yan, Dong
    Li, Jinquan
    Qiong, La
    Yang, Yuanwu
    Fang, Changming
    Wu, Jihua
    APPLIED SOIL ECOLOGY, 2022, 170
  • [8] Scaling effects on landscape metrics in alpine meadow on the central Qinghai-Tibetan Plateau
    Zhang, Wei
    Zhang, Jinglin
    GLOBAL ECOLOGY AND CONSERVATION, 2021, 29
  • [9] Impacts of alpine meadow degradation on the soil moisture and hydrological processes in the three river source region on the Qinghai Tibetan plateau
    Yang, Yongsheng
    Wang, Junbang
    Xu, Xinliang
    Zhang, Shuping
    Li, Yuzhe
    Fan, Yuejun
    Zhou, Huakun
    HYDROLOGICAL PROCESSES, 2023, 37 (04)
  • [10] Different response of alpine meadow and alpine steppe to climatic and anthropogenic disturbance on the Qinghai-Tibetan Plateau
    Hao, Aihua
    Duan, Hanchen
    Wang, Xufeng
    You, Quangang
    Peng, Fei
    Du, Heqiang
    Zhao, Guohui
    Liu, Feiyao
    Li, Chengyang
    Lai, Chimin
    Xue, Xian
    GLOBAL ECOLOGY AND CONSERVATION, 2021, 27