A predictive language model for SARS-CoV-2 evolution

被引:0
作者
Ma, Enhao [1 ]
Guo, Xuan [1 ,2 ]
Hu, Mingda [3 ]
Wang, Penghua [4 ]
Wang, Xin [3 ]
Wei, Congwen [3 ]
Cheng, Gong [1 ,2 ]
机构
[1] Tsinghua Univ, Sch Basic Med Sci, 30 Shuangqing Rd, Beijing 100084, Peoples R China
[2] Inst Infect Dis, Shenzhen Bay Lab, Guangqiao Rd, Shenzhen 518000, Guangdong, Peoples R China
[3] Beijing Inst Biotechnol, 20 Dongdajie, Beijing 100071, Peoples R China
[4] Univ Connecticut Hlth Ctr, Sch Med, Dept Immunol, Farmington, CT 06030 USA
基金
中国国家自然科学基金;
关键词
EVASION;
D O I
10.1038/s41392-024-02066-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modeling and predicting mutations are critical for COVID-19 and similar pandemic preparedness. However, existing predictive models have yet to integrate the regularity and randomness of viral mutations with minimal data requirements. Here, we develop a non-demanding language model utilizing both regularity and randomness to predict candidate SARS-CoV-2 variants and mutations that might prevail. We constructed the "grammatical frameworks" of the available S1 sequences for dimension reduction and semantic representation to grasp the model's latent regularity. The mutational profile, defined as the frequency of mutations, was introduced into the model to incorporate randomness. With this model, we successfully identified and validated several variants with significantly enhanced viral infectivity and immune evasion by wet-lab experiments. By inputting the sequence data from three different time points, we detected circulating strains or vital mutations for XBB.1.16, EG.5, JN.1, and BA.2.86 strains before their emergence. In addition, our results also predicted the previously unknown variants that may cause future epidemics. With both the data validation and experiment evidence, our study represents a fast-responding, concise, and promising language model, potentially generalizable to other viral pathogens, to forecast viral evolution and detect crucial hot mutation spots, thus warning the emerging variants that might raise public health concern.
引用
收藏
页数:17
相关论文
共 45 条
[21]   Predicting the mutational drivers of future SARS-CoV-2 variants of concern [J].
Maher, M. Cyrus ;
Bartha, Istvan ;
Weaver, Steven ;
di Iulio, Julia ;
Ferri, Elena ;
Soriaga, Leah ;
Lempp, Florian A. ;
Hie, Brian L. ;
Bryson, Bryan ;
Berger, Bonnie ;
Robertson, David L. ;
Snell, Gyorgy ;
Corti, Davide ;
Virgin, Herbert W. ;
Pond, Sergei L. Kosakovsky ;
Telenti, Amalio .
SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (633)
[22]  
Mckinney W., 2011, PYTHON HIGH PERFORMA
[23]   Renewed global threat by the novel SARS-CoV-2 variants 'XBB, BF.7, BQ.1, BA.2.75, BA.4.6': A discussion [J].
Mohapatra, Ranjan K. ;
Mahal, Ahmed ;
Kutikuppala, L. V. Simhachalam ;
Pal, Madhumita ;
Kandi, Venkataramana ;
Sarangi, Ashish K. ;
Obaidullah, Ahmad J. ;
Mishra, Snehasish .
FRONTIERS IN VIROLOGY, 2022, 2
[24]   Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay [J].
Nie, Jianhui ;
Li, Qianqian ;
Wu, Jiajing ;
Zhao, Chenyan ;
Hao, Huan ;
Liu, Huan ;
Zhang, Li ;
Nie, Lingling ;
Qin, Haiyang ;
Wang, Meng ;
Lu, Qiong ;
Li, Xiaoyu ;
Sun, Qiyu ;
Liu, Junkai ;
Fan, Changfa ;
Huang, Weijin ;
Xu, Miao ;
Wang, Youchun .
NATURE PROTOCOLS, 2020, 15 (11) :3699-3715
[25]   Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study [J].
Nyberg, Tommy ;
Ferguson, Neil M. ;
Nash, Sophie G. ;
Webster, Harriet H. ;
Flaxman, Seth ;
Andrews, Nick ;
Hinsley, Wes ;
Bernal, Jamie Lopez ;
Kall, Meaghan ;
Bhatt, Samir ;
Blomquist, Paula ;
Zaidi, Asad ;
Volz, Erik ;
Aziz, Nurin Abdul ;
Harman, Katie ;
Funk, Sebastian ;
Abbott, Sam ;
Hope, Russell ;
Charlett, Andre ;
Chand, Meera ;
Ghani, Azra C. ;
Seaman, Shaun R. ;
Dabrera, Gavin ;
De Angelis, Daniela ;
Presanis, Anne M. ;
Thelwall, Simon .
LANCET, 2022, 399 (10332) :1303-1312
[26]   The language of proteins: NLP, machine learning & protein sequences [J].
Ofer, Dan ;
Brandes, Nadav ;
Linial, Michal .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :1750-1758
[27]   Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2 [J].
Qu, Panke ;
Evans, John P. ;
Faraone, Julia N. ;
Zheng, Yi-Min ;
Carlin, Claire ;
Anghelina, Mirela ;
Stevens, Patrick ;
Fernandez, Soledad ;
Jones, Daniel ;
Lozanski, Gerard ;
Panchal, Ashish ;
Saif, Linda J. ;
Oltz, Eugene M. ;
Xu, Kai ;
Gumina, Richard J. ;
Liu, Shan-Lu .
CELL HOST & MICROBE, 2023, 31 (01) :9-+
[28]   Mechanisms of viral mutation [J].
Sanjuan, Rafael ;
Domingo-Calap, Pilar .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2016, 73 (23) :4433-4448
[29]   Preclinical development of kinetin as a safe error-prone SARS-CoV-2 antiviral able to attenuate virus-induced inflammation [J].
Souza, Thiago Moreno L. ;
Pinho, Vagner D. ;
Setim, Cristina F. ;
Sacramento, Carolina Q. ;
Marcon, Rodrigo ;
Fintelman-Rodrigues, Natalia ;
Chaves, Otavio A. ;
Heller, Melina ;
Temerozo, Jairo R. ;
Ferreira, Andre C. ;
Mattos, Mayara ;
Momo, Patricia B. ;
Dias, Suelen S. G. ;
Gesto, Joao S. M. ;
Pereira-Dutra, Filipe ;
Viola, Joao P. B. ;
Queiroz-Junior, Celso Martins ;
Guimaraes, Lays Cordeiro ;
Chaves, Ian Meira ;
Guimaraes, Pedro Pires Goulart ;
Costa, Vivian Vasconcelos ;
Teixeira, Mauro Martins ;
Bou-Habib, Dumith Chequer ;
Bozza, Patricia T. ;
Aguillon, Anderson R. ;
Siqueira-Junior, Jarbas ;
Macedo-Junior, Sergio ;
Andrade, Edineia L. ;
Fadanni, Guilherme P. ;
Tolouei, Sara E. L. ;
Potrich, Francine B. ;
Santos, Adara A. ;
Marques, Naiani F. ;
Calixto, Joao B. ;
Rabi, Jaime A. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[30]   The Shannon Information entropy of protein sequences [J].
Strait, BJ ;
Dewey, TG .
BIOPHYSICAL JOURNAL, 1996, 71 (01) :148-155