Investigation of solid-liquid interface interactions in transition-metal chalcogenides in saline environments by ambient-pressure X-ray photoelectron spectroscopy for applications in desalination and mineral recovery

被引:0
|
作者
Boukhvalov, Danil W. [1 ]
D'Olimpio, Gianluca [2 ]
Dadiani, Tsotne [2 ]
Santoro, Sergio [3 ]
Cupolillo, Anna [4 ]
Kuo, Chia-Nung [5 ]
Lue, Chin Shan [5 ]
Bar-Sadan, Maya [6 ]
Hrbek, Tomas [7 ]
Rodriguez, Miquel Gamon [7 ]
Vorochta, Michael [7 ]
Curcio, Efrem [3 ]
Politano, Antonio [2 ]
机构
[1] Nanjing Forestry Univ, Inst Mat Phys & Chem, Nanjing 210037, Peoples R China
[2] Univ Aquila, Dept Phys & Chem Sci, I-67100 Laquila, Italy
[3] Univ Calabria, Dept Environm Engn, Via Pietro Bucci CUBO 44A, I-87036 Arcavacata Di Rende, CS, Italy
[4] Univ Calabria, Dept Phys, Via Pietro Bucci Cubo 31C, I-87036 Arcavacata Di Rende, CS, Italy
[5] Natl Chang Kung Univ, Dept Phys, 1 Ta Hsueh Rd, Tainan 70101, Taiwan
[6] Ben Gurion Univ Negev, Dept Chem, IL-8410501 Beer Sheva, Israel
[7] Charles Univ Prague, Fac Math & Phys, Dept Surface & Plasma Sci, V Holesovickach 2, Prague, Czech Republic
关键词
Surface science; X-ray photoelectron spectroscopy; Liquid-solid interfaces; Operando spectroscopies; Nanofillers; Salt dissolution; Density functional theory; CATALYSIS;
D O I
10.1016/j.desal.2025.118628
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Here, we report on ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) experiments aimed at exploring the complex surface interactions and dissolution behaviors of nanofillers in nanocomposites under high-salinity conditions pertinent to desalination and mineral recovery. In situ AP-XPS analysis at solid-liquid interfaces under near-ambient conditions provided experimental proof of salinity-induced partial dissolution and interactions with chloride ions, revealing the formation of complex surface-bound species. Transition-metal chalcogenides NiSe and CoSe were specifically selected as model nanofillers due to their potential in enhancing performance for membrane distillation (MD) and membrane crystallization (MCr) processes. Complementary density functional theory (DFT) simulations provided a detailed mechanistic understanding, offering a robust predictive framework validated by our experimental findings. This integrated approach elucidates critical physicochemical processes at the solid-liquid interface, guiding the design of more efficient and durable nanocomposite membranes for sustainable mineral recovery from brines.
引用
收藏
页数:6
相关论文
共 1 条
  • [1] Water-Gas Shift Reaction on Metal Nanoclusters Encapsulated in Mesoporous Ceria Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy
    Wen, Cun
    Zhu, Yuan
    Ye, Yingchun
    Zhang, Shiran
    Cheng, Fang
    Liu, Yi
    Wang, Paul
    Tao, Franklin
    ACS NANO, 2012, 6 (10) : 9305 - 9313