High performance Janus separator based on microstructurally controllable halloysite nanotubes for zinc-ion batteries

被引:0
作者
Xu, Peijie [1 ,2 ,3 ]
Yu, Yuhang [1 ]
Du, Beibei [4 ]
Cao, Yongdan [1 ,2 ,3 ]
Sun, Donghui [1 ]
Ji, Zengchao [1 ]
Zhu, Yifei [1 ]
Jia, Yanyue [5 ]
Liu, Yang [1 ,2 ,3 ]
Cao, Zhao [1 ,2 ,3 ]
机构
[1] Inner Mongolia Univ Sci & Technol, Sch Min & Coal Engn, Baotou 014010, Peoples R China
[2] Inner Mongolia Key Lab Min Engn, Baotou 014010, Peoples R China
[3] Inner Mongolia Univ Sci & Technol, Key Lab Green Extract & Efficient Utilizat Light R, Minist Educ, Baotou 014010, Peoples R China
[4] Inner Mongolia Univ Sci & Technol, Sch Digital & Intelligent Ind, Sch Cyber Sci & Technol, Baotou 014010, Peoples R China
[5] Shanghai Maritime Univ, China Logist Engn Coll, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Halloysite nanotube; Zinc ion battery; Separator; Dendrite-free anode; Long-term cycling; TOTAL-ENERGY CALCULATIONS; DENDRITE-FREE; CHALLENGES; ANODE; ELECTROLYTE; EFFICIENCY; DESIGN; FILM;
D O I
10.1016/j.est.2025.115820
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Zinc-ion batteries(ZIBs) are promising as the stationary energy storage owing to their inherent high safety, costeffective, and environmental-friendly. Nevertheless, the notorious dendrite growth and water-induced side reactions on Zn anode significantly downgrade the long-lasting cycling stability and hinder the industrialization of ZIBs. Herein, a flux-homogenized Zn2+ transport system based on a Janus separator is constructed. This Janus separator features bacterial cellulose (BC) layer on one side and roughened halloysite nanotubes/bacterial cellulose (RHNTs/BC) layer on the other side. The abundant surface hydroxyl groups, zincophilicity sites, and ionic transmission paths of RHNTs make them ideal for acting as an ion pump to accelerate the transportation of ions, contributing to the immensely improvement of the de-solvation process, zinc deposition, and the growth of Zn dendrites. As a result, the Zn/Zn symmetrical cell with Janus separator can achieve a stable cycle life of over 800 h at 4.40 mA cm- 2. More impressively, the full cell based on Janus separator enables excellent cycling stability. This study enriches the structurally controllable construction method of HNTs and provides the fundamental theories for the application of HNTs in the field of new high-efficiency mineral energy storage materials.
引用
收藏
页数:12
相关论文
共 68 条
[1]  
Zhao X., Fu Z., Zhang X., Wang X., Li B., Zhou D., Kang F., More is better: high-entropy electrolyte design in rechargeable batteries, Energ. Environ. Sci., 17, pp. 2406-2430, (2024)
[2]  
Sun S.-Y., Zhang X.-Q., Wang Y.-N., Li J.-L., Zheng Z., Huang J.-Q., Understanding the transport mechanism of lithium ions in solid-electrolyte interphase in lithium metal batteries with liquid electrolytes, Mater. Today, 77, pp. 39-65, (2024)
[3]  
Wang R., Cui W., Chu F., Wu F., Lithium metal anodes: present and future, Journal of Energy Chemistry, 48, pp. 145-159, (2020)
[4]  
Liu B., Zhang J.-G., Xu W., Advancing lithium metal batteries, Joule, 2, 5, pp. 833-845, (2018)
[5]  
Xu P., Wang C., Zhao B., Zhou Y., Cheng H., A high-strength and ultra-stable halloysite nanotubes-crosslinked polyacrylamide hydrogel electrolyte for flexible zinc-ion batteries, J. Power Sources, 506, (2021)
[6]  
Zhang Q., Luan J., Tang Y., Ji X., Wang H., Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 59, 32, pp. 13180-13191, (2020)
[7]  
Li B., Zeng Y., Zhang W., Lu B., Yang Q., Zhou J., He Z., Separator designs for aqueous zinc-ion batteries, Sci. Bull., 69, 5, pp. 688-703, (2024)
[8]  
Xu Y., Zhang G., Liu J., Zhang J., Wang X., Pu X., Wang J., Yan C., Cao Y., Yang H., Li W., Li X., Recent advances on challenges and strategies of manganese dioxide cathodes for aqueous zinc-ion batteries, Energy Environ. Mater., 6, 6, (2023)
[9]  
Du W., Ang E.H., Yang Y., Zhang Y., Ye M., Li C.C., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries, Energ. Environ. Sci., 13, 10, pp. 3330-3360, (2020)
[10]  
Li X., Wang L., Fu Y., Dang H., Wang D., Ran F., Optimization strategies toward advanced aqueous zinc-ion batteries: from facing key issues to viable solutions, Nano Energy, 116, (2023)