Multi-omics revealed the mechanisms of AgNP-priming enhanced rice salinity tolerance

被引:0
|
作者
Chen, Si [1 ]
Pan, Zhengyan [2 ]
Peralta-Videa, Jose R. [3 ]
Zhao, Lijuan [1 ]
机构
[1] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Peoples R China
[2] Liaoning Acad Agr Sci, Inst Plant Protect, Shenyang 110101, Peoples R China
[3] Univ Texas El Paso, Dept Chem & Biochem, 500 West Univ Ave, El Paso, TX 79968 USA
关键词
SALT TOLERANCE; FUNCTIONAL-ANALYSIS; SIGNALING NETWORK; STRESS TOLERANCE; OVEREXPRESSION; HOMEOSTASIS; METABOLISM; EXPRESSION; GENE; REDUCTASE;
D O I
10.1039/d4en00685b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rice is highly susceptible to salt stress. Increasing the salt tolerance of rice is critical to reduce yield loss. Herein, we investigated the possibility of using an AgNP-based priming method (seed soaking (SP) and leaf spraying (LP)) to enhance rice salt tolerance. Under saline conditions, both SP (40 mg L-1) and LP (similar to 0.15 mg per plant) significantly increased the biomass (10.4-13.4%) and height (6.6-6.9%) of 6-week-old rice seedlings. In addition, SP significantly increased chlorophyll a (7.3%) and carotenoid (7.9%) content as well as total antioxidant capacity (10.5%), whereas it decreased malondialdehyde (MDA) content (16.9%) in rice leaves. These findings indicate that AgNP priming, especially SP, improved the salt tolerance of rice seedlings. A life cycle field study conducted in a real saline land revealed that SP significantly increased the rice grain yield by 25.8% compared to hydropriming. Multi-omics analyses demonstrated that AgNP priming induced metabolic and transcriptional reprogramming in both seeds and leaves. Notably, both SP and LP upregulated osmoprotectants in seeds and leaves. Furthermore, several transcriptional factors (TFs), such as WRKY and NAC, and salt-tolerance related genes, including the high-affinity K+ channel gene (OsHKT2;4, OsHAK5), the Ca2+/proton exchanger (CAX4), and the cation/Ca2+ exchanger (CCX4), were upregulated in leaves. Omics data provide a deep insight into the molecular mechanisms for enhanced salinity tolerance. Together, the results of this study suggest that seed priming with AgNPs can enhance the salt tolerance of rice and increase rice yield in saline soil, which provides an efficient and simple way to engineering salt-tolerant rice.
引用
收藏
页码:466 / 480
页数:15
相关论文
共 50 条
  • [1] Multi-Omics and Integrative Approach towards Understanding Salinity Tolerance in Rice: A Review
    Muthuramalingam, Pandiyan
    Jeyasri, Rajendran
    Rakkammal, Kasinathan
    Satish, Lakkakula
    Shamili, Sasanala
    Karthikeyan, Adhimoolam
    Valliammai, Alaguvel
    Priya, Arumugam
    Selvaraj, Anthonymuthu
    Gowri, Pandiyan
    Wu, Qiang-Sheng
    Pandian, Shunmugiah Karutha
    Shin, Hyunsuk
    Chen, Jen-Tsung
    Baskar, Venkidasamy
    Thiruvengadam, Muthu
    Akilan, Manoharan
    Ramesh, Manikandan
    BIOLOGY-BASEL, 2022, 11 (07):
  • [2] Signaling mechanisms in renal compensatory hypertrophy revealed by multi-omics
    Kikuchi, Hiroaki
    Chou, Chung-Lin
    Yang, Chin-Rang
    Chen, Lihe
    Jung, Hyun Jun
    Park, Euijung
    Limbutara, Kavee
    Carter, Benjamin
    Yang, Zhi-Hong
    Kun, Julia F.
    Remaley, Alan T.
    Knepper, Mark A.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Signaling mechanisms in renal compensatory hypertrophy revealed by multi-omics
    Hiroaki Kikuchi
    Chung-Lin Chou
    Chin-Rang Yang
    Lihe Chen
    Hyun Jun Jung
    Euijung Park
    Kavee Limbutara
    Benjamin Carter
    Zhi-Hong Yang
    Julia F. Kun
    Alan T. Remaley
    Mark A. Knepper
    Nature Communications, 14
  • [4] Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice
    Dai, Liping
    Li, Peiyuan
    Li, Qing
    Leng, Yujia
    Zeng, Dali
    Qian, Qian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [5] Response Mechanisms to Flooding Stress in Mulberry Revealed by Multi-Omics Analysis
    Hu, Jingtao
    Chen, Wenjing
    Duan, Yanyan
    Ru, Yingjing
    Cao, Wenqing
    Xiang, Pingwei
    Huang, Chengzhi
    Zhang, Li
    Chen, Jingsheng
    Gan, Liping
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024, 93 (02) : 227 - 245
  • [6] Unique starch biosynthesis pathways in wild rice revealed by multi-omics analyses
    Nurmansyah, Agnelo
    Furtado, Agnelo
    Okemo, Pauline
    Henry, Robert J.
    PLANT BIOTECHNOLOGY JOURNAL, 2025,
  • [7] Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms
    Ho, William Wing Ho
    Hill, Camilla B.
    Doblin, Monika S.
    Shelden, Megan C.
    van de Meene, Allison
    Rupasinghe, Thusitha
    Bacic, Antony
    Roessner, Ute
    PLANT COMMUNICATIONS, 2020, 1 (03)
  • [8] Multi-Omics Analysis Reveals the Regulatory and Metabolic Mechanisms Underlying Low-Nitrogen Tolerance at the Flowering Stage in Rice
    Wang, Yanru
    Jiang, Jing
    Qian, Yukang
    Miao, Siyu
    Wang, Wensheng
    Xu, Jianlong
    Fu, Binying
    Zhang, Fan
    Zhao, Xiuqin
    AGRONOMY-BASEL, 2023, 13 (02):
  • [9] Multi-omics approach reveals the contribution of OsSEH1 to rice cold tolerance
    Gu, Shuang
    Zhuang, Jia
    Zhang, Zhe
    Chen, Wanchun
    Xu, Hai
    Zhao, Minghui
    Ma, Dianrong
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [10] Multi-omics approaches for abiotic stress tolerance in rice (Oryza sativa L.)
    Archana, Papanaboyina
    Ramamoorthy, Pushpam
    Swaminathan, Manonmani
    Muthurajan, Raveendran
    Alagarsamy, Senthil
    Kathiresan, Pravin Kumar
    PLANT SCIENCE TODAY, 2024, 11 : 14 - 14