A tutorial review of machine learning-based model predictive control methods

被引:4
作者
Wu, Zhe [1 ]
Christofides, Panagiotis D. [2 ]
Wu, Wanlu [1 ]
Wang, Yujia [1 ]
Abdullah, Fahim [3 ]
Alnajdi, Aisha [3 ]
Kadakia, Yash [3 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore, Singapore
[2] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA USA
基金
美国国家科学基金会;
关键词
machine learning; neural networks; model predictive control; nonlinear systems; chemical processes; PRINCIPAL COMPONENT ANALYSIS; NEURAL-NETWORK MODELS; FEATURE-SELECTION; VARIATIONAL AUTOENCODER; OPTIMIZATION; STABILITY; FRAMEWORK; STABILIZATION; DIMENSION; SYSTEMS;
D O I
10.1515/revce-2024-0055
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This tutorial review provides a comprehensive overview of machine learning (ML)-based model predictive control (MPC) methods, covering both theoretical and practical aspects. It provides a theoretical analysis of closed-loop stability based on the generalization error of ML models and addresses practical challenges such as data scarcity, data quality, the curse of dimensionality, model uncertainty, computational efficiency, and safety from both modeling and control perspectives. The application of these methods is demonstrated using a nonlinear chemical process example, with open-source code available on GitHub. The paper concludes with a discussion on future research directions in ML-based MPC.
引用
收藏
页码:359 / 400
页数:42
相关论文
共 258 条
[51]   Decentralized machine-learning-based predictive control of nonlinear processes [J].
Chen, Scarlett ;
Wu, Zhe ;
Christofides, Panagiotis D. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2020, 162 :45-60
[52]   Machinelearning-baseddistributed model predictive control of nonlinear processes [J].
Chen, Scarlett ;
Wu, Zhe ;
Rincon, David ;
Christofides, Panagiotis D. .
AICHE JOURNAL, 2020, 66 (11)
[53]   Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control [J].
Chen, Wei-Han ;
You, Fengqi .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (03) :1186-1197
[54]  
Chen Y., 2018, ARXIV
[55]   A novel process monitoring approach based on variational recurrent autoencoder [J].
Cheng, Feifan ;
He, Q. Peter ;
Zhao, Jinsong .
COMPUTERS & CHEMICAL ENGINEERING, 2019, 129
[56]  
Cho K, 2014, ARXIV
[57]   Distributed model predictive control: A tutorial review and future research directions [J].
Christofides, Panagiotis D. ;
Scattolini, Riccardo ;
Munoz de la Pena, David ;
Liu, Jinfeng .
COMPUTERS & CHEMICAL ENGINEERING, 2013, 51 :21-41
[58]  
Cisse M., 2017, P 34 INT C MACHINE L, V854, P863
[59]   Machine learning-based ethylene concentration estimation, real-time optimization and feedback control of an experimental electrochemical reactor [J].
Citmaci, Berkay ;
Luo, Junwei ;
Jang, Joon Baek ;
Canuso, Vito ;
Richard, Derek ;
Ren, Yi Ming ;
Morales-Guio, Carlos G. ;
Christofides, Panagiotis D. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 185 :87-107
[60]   Machine learning in process systems engineering: Challenges and opportunities [J].
Daoutidis, Prodromos ;
Lee, Jay H. ;
Rangarajan, Srinivas ;
Chiang, Leo ;
Gopaluni, Bhushan ;
Schweidtmann, Artur M. ;
Harjunkoski, Iiro ;
Mercangoz, Mehmet ;
Mesbah, Ali ;
Boukouvala, Fani ;
Lima, Fernando, V ;
Chanona, Antonio del Rio ;
Georgakis, Christos .
COMPUTERS & CHEMICAL ENGINEERING, 2024, 181