Neutron stars in Gauss-Bonnet extended Starobinsky gravity

被引:0
作者
Liu, Zhonghai [1 ]
Li, Ziyi [1 ]
Liang, Liang [2 ,3 ]
Li, Shoulong [1 ]
Yu, Hongwei [1 ]
机构
[1] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effect & Applicat, Dept Phys, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Inst Interdisciplinary Studies, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Shuda Coll, Changsha 410017, Peoples R China
基金
中国国家自然科学基金;
关键词
ROTATING RELATIVISTIC STARS; EQUATIONS; MODELS; STATE;
D O I
10.1103/PhysRevD.110.124052
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, a class of Gauss-Bonnet extended Starobinsky gravity was proposed, allowing black holes to carry ghost-free massive scalar hair for the first time without requiring additional matter fields. This intriguing feature offers a new perspective for understanding higher-curvature pure gravity and highlights the importance of further studying the potential effects of Gauss-Bonnet extensions in gravitational systems beyond black holes. In this study, we investigate the properties of neutron stars within this model, focusing on how the higher-curvature terms, particularly the coupling between the Gauss-Bonnet term and the curvature-squared term, impact the stellar structure. We present a detailed analysis of these effects and compute the moment of inertia for rotating neutron stars under the slow-rotation approximation. The substantial differences in the moment of inertia between general relativity and Gauss-Bonnet extended Starobinsky gravity are expected to be detectable through future high-precision observations.
引用
收藏
页数:15
相关论文
共 90 条
  • [81] Cook G. B., Shapiro S. L., Teukolsky S. A., Rapidly rotating neutron stars in general relativity: Realistic equations of state, Astrophys. J, 424, (1994)
  • [82] Suvorov A. G., Glampedakis K., Magnetically supramassive neutron stars, Phys. Rev. D, 105, (2022)
  • [83] Kaplan J. D., Ott C. D., O'Connor E. P., Kiuchi K., Roberts L., Duez M., The influence of thermal pressure on equilibrium models of hypermassive neutron star merger remnants, Astrophys. J, 790, (2014)
  • [84] Hu H., Kramer M., Wex N., Champion D. J., Kehl M. S., Constraining the dense matter equation-of-state with radio pulsars, Mon. Not. R. Astron. Soc, 497, (2020)
  • [85] Miao Z., Li A., Dai Z. G., On the moment of inertia of PSR J0737-3039 A from LIGO/Virgo and NICER, Mon. Not. R. Astron. Soc, 515, (2022)
  • [86] Shao L., Stairs I. H., Antoniadis J., Deller A. T., Freire P. C. C., Hessels J. W. T., Janssen G. H., Kramer M., Kunz J., Lammerzahl C., Testing gravity with pulsars in the SKA era, Proc. Sci, 2015, AASKA14
  • [87] Weltman A., Bull P., Camera S., Kelley K., Padmanabhan H., Pritchard J., Raccanelli A., Riemer-Sorensen S., Shao L., Andrianomena S., Fundamental physics with the Square Kilometre Array, Pub. Astron. Soc. Aust, 37, (2020)
  • [88] Yagi K., Yunes N., I-Love-Q, Science, 341, (2013)
  • [89] Yagi K., Yunes N., I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves and fundamental physics, Phys. Rev. D, 88, (2013)
  • [90] Kokkotas K. D., Schmidt B. G., Quasinormal modes of stars and black holes, Living Rev. Relativity, 2, (1999)