Neutron stars in Gauss-Bonnet extended Starobinsky gravity

被引:0
作者
Liu, Zhonghai [1 ]
Li, Ziyi [1 ]
Liang, Liang [2 ,3 ]
Li, Shoulong [1 ]
Yu, Hongwei [1 ]
机构
[1] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effect & Applicat, Dept Phys, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Inst Interdisciplinary Studies, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Shuda Coll, Changsha 410017, Peoples R China
基金
中国国家自然科学基金;
关键词
ROTATING RELATIVISTIC STARS; EQUATIONS; MODELS; STATE;
D O I
10.1103/PhysRevD.110.124052
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, a class of Gauss-Bonnet extended Starobinsky gravity was proposed, allowing black holes to carry ghost-free massive scalar hair for the first time without requiring additional matter fields. This intriguing feature offers a new perspective for understanding higher-curvature pure gravity and highlights the importance of further studying the potential effects of Gauss-Bonnet extensions in gravitational systems beyond black holes. In this study, we investigate the properties of neutron stars within this model, focusing on how the higher-curvature terms, particularly the coupling between the Gauss-Bonnet term and the curvature-squared term, impact the stellar structure. We present a detailed analysis of these effects and compute the moment of inertia for rotating neutron stars under the slow-rotation approximation. The substantial differences in the moment of inertia between general relativity and Gauss-Bonnet extended Starobinsky gravity are expected to be detectable through future high-precision observations.
引用
收藏
页数:15
相关论文
共 90 条
  • [1] Padmanabhan T., Kothawala D., Lanczos-Lovelock models of gravity, Phys. Rep, 531, (2013)
  • [2] Belenchia A., Letizia M., Liberati S., Casola E. D., Higher-order theories of gravity: Diagnosis, extraction and reformulation via non-metric extra degrees of freedom-a review, Rep. Prog. Phys, 81, (2018)
  • [3] Shankaranarayanan S., Johnson J. P., Modified theories of gravity: Why, how and what, Gen. Relativ. Gravit, 54, (2022)
  • [4] Stelle K. S., Renormalization of higher derivative quantum gravity, Phys. Rev. D, 16, (1977)
  • [5] Stelle K. S., Classical gravity with higher derivatives, Gen. Relativ. Gravit, 9, (1978)
  • [6] Bueno P., Cano P. A., Einsteinian cubic gravity, Phys. Rev. D, 94, (2016)
  • [7] Hennigar R. A., Kubiznak D., Mann R. B., Generalized quasitopological gravity, Phys. Rev. D, 95, (2017)
  • [8] Li Y. Z., Liu H. S., Lu H., Quasi-topological Ricci polynomial gravities, J. High Energy Phys, 2018
  • [9] Starobinsky A. A., A new type of isotropic cosmological models without singularity, Phys. Lett, 91B, (1980)
  • [10] Sotiriou T. P., Faraoni V., (Equation presented) theories of gravity, Rev. Mod. Phys, 82, (2010)