Construction of novel CoMoO4/AgVO3 heterojunction with abundant oxygen vacancies for efficient photocatalytic hydrogen evolution

被引:0
作者
Wang, Miao [1 ,2 ,3 ]
Wang, Kai [1 ,2 ,3 ]
Jin, Zhiliang [1 ,2 ,3 ]
机构
[1] North Minzu Univ, Sch Chem & Chem Engn, Yinchuan 750021, Peoples R China
[2] North Minzu Univ, Ningxia Key Lab Solar Chem Convers Technol, Yinchuan 750021, Peoples R China
[3] North Minzu Univ, Key Lab Chem Engn & Technol, State Ethn Affairs Commiss, Yinchuan 750021, Peoples R China
关键词
Oxygen vacancies; S -scheme electron transfer; DFT; Photocatalytic hydrogen production; SCHEME HETEROJUNCTION; NANOSHEETS; WATER;
D O I
10.1016/j.seppur.2025.132041
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To address the limitations of CoMoO4 photocatalysts (e.g., high recombination rate of photogenerated electronhole pairs and low light energy utilization), a novel CoMoO4/AgVO3 photocatalyst enriched with oxygen vacancies (OV) was constructed and the photocatalytic hydrogen production ability under visible light irradiation was investigated. The experimental results indicate that the hydrogen production efficiency of CoMoO4/AgVO330 reaches 3049.28 mu mol g- 1h- 1, which is 5.07 times higher than that of CoMoO4 and 8.89 times higher than that of AgVO3. Based on the XPS, UPS and DFT characterization results, it can be inferred that, since the work function of CoMoO4 compared to is lower than that of AgVO3, the electrons of CoMoO4 undergo transfer AgVO3 when the two are in contact, thus optimizing the energy band structure. In-situ XPS results further reveal that under photoexcitation conditions, the electrons of CoMoO4 are continuously transferred to AgVO3, consistent with the S-scheme electron transfer mechanism, which facilitates the spatial separation of photogenerated carriers and holes. Furthermore, the abundant OV in CoMoO4/AgVO3 enhances the capture of photogenerated electrons and promotes the hydrogen evolution reaction. S-scheme electron transfer mechanism synergizes with abundant OV to boost photocatalytic hydrogen evolution activity.
引用
收藏
页数:13
相关论文
共 68 条
  • [41] Cai H., Wang B., Xiong L., Bi J., Yuan L., Yang G., Yang S., Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution, Appl Catal B, 256, (2019)
  • [42] Ali A., Ali S., Zulfiqar S., Kang K.T., Khan T., Khattak S., Khan G., Rahman M.U., Shaik M.R., Investigation of ZnO@CdS nanocomposite with amplified photocatalytic H<sub>2</sub> production under visible light irradiation, Surf. Interfaces, 52, (2024)
  • [43] Li J., Chang H., Feng S., Jian H., Shen Q., Liu X., Jia H., Xue J., TiO<sub>2</sub>@Ti MOFs hollow double-shell structure by in-situ self-sacrificial hydrolytic etching for enhanced photocatalytic hydrogen evolution, Chem. Eng. J., 498, (2024)
  • [44] Wang M., Wang K., Jin Z., Fabrication of Zn-doped Cu<sub>2</sub>O for auxiliary graphdiyne to enhance photocatalytic H<sub>2</sub> evolution performance, J. Environ. Chem. Eng., 12, (2024)
  • [45] Xu S., Xu J., Hu L., Liu Y., Ma L., S-Scheme heterojunction based on the in situ coated core–shell NiCo<sub>2</sub>S<sub>4</sub>@WS<sub>2</sub> photocatalyst was constructed for efficient photocatalytic hydrogen evolution, New J. Chem., 46, pp. 57-69, (2022)
  • [46] Yan J., Shi L., Wang F., Yao L., The boosted and inactivated mechanism of photocatalytic hydrogen evolution from pure water over CoP modified phosphorus doped Mn<sub>x</sub>Cd<sub>1-x</sub>S, J. Taiwan Inst. Chem. Eng., 131, (2022)
  • [47] Ganapathy M., Hsu Y., Thomas J., Chen L.-Y., Chang C.-T., Alagan V., Preparation of SrTiO<sub>3</sub>/Bi<sub>2</sub>S<sub>3</sub> heterojunction for efficient photocatalytic hydrogen production, Energy Fuels, 35, pp. 14995-15004, (2021)
  • [48] Yang J.-H., Kim S., Kim I.Y., Lee J.M., Yi J., Karakoti A., Joseph S., Albahily K., Vinu A., Highly enhanced photocatalytic hydrogen evolution activity of graphitic carbon nitride with 3D connected mesoporous structure, Sustain. Mater. Technol., 25, (2020)
  • [49] Yang C., Li X., Li M., Liang G., Jin Z., Anchoring oxidation co-catalyst over CuMn<sub>2</sub>O<sub>4</sub>/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution, Chin. J. Catal., 56, pp. 88-103, (2024)
  • [50] Belakehal R., Atacan K., Guy N., Megriche A., Ozacar M., Fabrication of heterostructured CdS/g-C<sub>3</sub>N<sub>4</sub>/ZnFe<sub>2</sub>O<sub>4</sub> nanocomposite synthesized through ultrasonic-assisted method for efficient photocatalytic hydrogen production, Appl. Surf. Sci., 602, (2022)